Skip to main content

Solid State Physics Fundamentals of LED Thermal Behavior

  • Chapter
  • First Online:
Thermal Management for LED Applications

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 2))

Abstract

This chapter provides the basics on the physics of light-emitting diode (LED) operation: band structures, carrier transport, different recombination mechanisms, etc. and presents the Shockley model of ideal semiconductor diodes. Device construction techniques, LED packaging styles —all affecting LED efficiency/efficacy are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capasso F, Ripamonti G, Tsing WT, Hutchinson AL, Chu SNG (1989) New photoconductive gain mechanism by electric field modulation in multiquantum-well heterostructures. J Appl Phys 65:388

    Article  Google Scholar 

  2. Casey HC, Panish M (1978) Heterostructure lasers. Academic press, New York

    Google Scholar 

  3. Digle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33:827

    Article  Google Scholar 

  4. Miller RC, Kleinman DA, Gossand AC (1984) Energy-gap discontinuities and effective masses for GaAs-AlxGa1-xAs quantum wells. Phys Rev B 29:7085

    Article  Google Scholar 

  5. Nakamura S, Sench M, Iwasa N, et al (1995) High brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys Lett 34:L797–L799

    Article  Google Scholar 

  6. Krames MR, Ochiai-Holcomb M (1999) High-power truncated inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50 external quantum efficiency. Appl Phys Lett 75(16):2365–2367

    Article  Google Scholar 

  7. Wierer JJ, Steigerwald DA, Krames MR, O’Shea JJ, Ludowise MJ, Christenson G, Shen Y-C, Lowery C, Martin PS, Subramanya S, Götz W, Gardner NF, Kern RS, Stockman SA (2001) High-power AlGaInN flip-chip light-emitting diodes. Appl Phys Lett 78(22):3379–3381

    Google Scholar 

  8. Wuu DS, Hsu SC, Huang SH, Horng RH (2004) Vertical-conducting p-side-up GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques. Phys Status Solidi (A) 201(12):2699–2703

    Article  Google Scholar 

  9. Cree product family sheet (2010) Cree XLamp XP-E High efficiency White LEDs Cree official website. http://www.cree.com/products/pdf/XLampXP-E-HEW.pdf. Accessed 18 July 2011

  10. Colinge JP, Colinge CA (2002) Physics of semiconductor devices. Kluwer Academic Publishers (Chaps. 4 and 9)

    Google Scholar 

  11. Nakamura S, Chichibu SF (2000) Introduction to nitride semiconductor blue lasers and light emitting diodes. CRC Press (Chaps. 1 and 3)

    Google Scholar 

  12. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley-Interscience (Chap. 2.3.1)

    Google Scholar 

  13. Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press (Chap. 4)

    Google Scholar 

  14. Hall RN (1960) Recombination processes in semiconductors. Proc Inst Electr Eng 106B(suppl 17):983

    Google Scholar 

  15. Garbuzov DZ (1982) Radiation effects, lifetimes and probabilities of band-to-band transitions in direct A3B3 compounds of GaAs type. J Lumin 27:109

    Article  Google Scholar 

  16. Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87:387

    Article  Google Scholar 

  17. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835

    Article  MATH  Google Scholar 

  18. Bhattacharya P (1996) Semiconductor optoelectronic devices, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  19. Hader J, Moloney JV, Koch SW (2005) Suppression of carrier recombination in semiconductor lasers by phase-space filling. Appl Phys Lett 87:201112

    Article  Google Scholar 

  20. Guo X, Schubert EF (2001) Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl Phys Lett 78:3337

    Article  Google Scholar 

  21. Guo X, Schubert EF (2001) Current crowding and optical saturation effects in GaN/InGaNligh emitting diodes on insulation substrates. J Appl Phys 90:4191

    Article  Google Scholar 

  22. Kim H, Cho J, Lee JW, Yoon S, Kim H, Sone C, Park Y, Seong T (2007) Consideration of the actual current-spreading length of GaN-based light-emitting diodes for high-efficiency design. IEEE J Quantum Electron 43:625

    Article  Google Scholar 

  23. Chang SJ, Shen CD, Chen WS, Ko TK, Kuo CT, Yu KH, Shei SC, Chiou YZ (2007) Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes. Electrochem Solid-state Lett 10:H175

    Google Scholar 

  24. Leung KK, Fong WK, et al (2010) Physical mechanisms for hot-electron degradation in GaN light-emitting diodes. J Appl Phys 7:107

    Google Scholar 

  25. Eunjin J, Hyoung RJ, et al (2011) Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermalstress. J Electrochem Soc 2:158

    Google Scholar 

  26. Hsu YC, Lin YK, et al (2007) Failure mechanisms associated with lens shape of high-power LED modules in aging test, LEOS 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society

    Google Scholar 

  27. Lin Y-H, You JP, et al (2010) Development of High-performance optical silicone for the packaging of high-power LEDs. IEEE Trans Compon Packag Technol 33(4):761–766

    Article  Google Scholar 

  28. Xi Y, et al (2005) Junction and carrier temperature measurements in deep ultraviolet light emitting diodes using three different methods. Appl Phy Lett 86:031907

    Article  Google Scholar 

  29. Meneghini M, Meneghesso G, Trevisanello L, Zanoni E (2008) A review on the reliability of GaN-based LEDs. IEEE Trans Device Mater Reliab 8:1530–4388

    Google Scholar 

  30. Cree product family sheet (2011) Cree XLamp XM-L high efficiency white LEDs cree official website http://www.cree.com/led-components-and-modules/products/xlamp/arrays-nondirectional/xlamp-cxa2011. Accessed 30 May 2013

  31. IESNA LM-80 Lumen maintenance: measuring lumen maintenance of LED light sources. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led_luminaire-lifetime-guide.pdf (for additional considerations and guidance page 4). Accessed 30 May 2013

Download references

Acknowledgments

Thanks are due to the following researchers from the Institute of Semiconductors, Chinese Academy of Sciences: Dr. Lixia Zhao, Dr. Ping Ma, Dr. Hua Yang, Dr. Xiaoyan Yi, Dr. Xiaoli Ji, Dr. Tongbo Wei, Dr. Jianchang Yan, and MPhil Bin Xue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J., Wang, J., Liu, Z., Poppe, A. (2014). Solid State Physics Fundamentals of LED Thermal Behavior. In: Lasance, C., Poppe, A. (eds) Thermal Management for LED Applications. Solid State Lighting Technology and Application Series, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5091-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5091-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5090-0

  • Online ISBN: 978-1-4614-5091-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics