Skip to main content

Genetics in Chronobiology and Obesity

  • Chapter
  • First Online:
  • 1494 Accesses

Abstract

Genetics is behind our circadian machinery. Some of our chronobiological characteristics could be influenced by genes. Different psychological traits such as depression, bipolar disorders, anxiety and seasonal variations of mood are intrinsically connected to chronobiology through different genetic variants. Moreover, sleep disorders or short sleep duration, are both associated to several polymorphisms connected to obesity. In this regards, one of the most outstanding SNPs is the CLOCK 3111TC SNP which is significantly associated to short sleep duration, eveningness, several psychological traits and obesity. This SNP has been also related to a reduction in weight loss effectiveness in patients submitted to a behavioral treatment of obesity. Ghrelin, eveningness, and a lack of compliance to the Mediterranean diet habits, could be behind these results. Apart from CLOCK SNPs, others genetic variants in several clock genes such as PERIOD or BMAL1 are also connected to obesity. The novel knowledge achieved in the circadian epigenome could give us new answers to the connections among genetics, circadian rhythmicity and obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

SNP:

Single nucleotide polymorphism

CLOCK:

Circadian locomotor output cycles kaput

PER:

Period homolog 2 (Drosophila)

BMAL1 or ARNTL or MOP3:

Aryl hydrocarbon receptor nuclear translocator-like

HGP:

Human genome project

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

mRNA:

Messenger ribonucleic acid

GH:

Growth hormone

SCN:

Suprachiasmatic nucleus

MetS:

Metabolic syndrome

MD:

Mood disorders

OMIM:

Online Mendelian inheritance in man

CRY:

Cryptochrome

REV-ERBα:

Nuclear receptor Rev-ErbA-alpha

SIRT:

Sirtuin

RORA or NR1D1:

RAR-related orphan receptor A

VIP:

Vasoactive intestinal polypeptide

ROR1:

Receptor tyrosine kinase-like orphan receptor 1

PLCB1:

Phospholipase C, beta 1

OSAS:

Obstructive sleep apnea syndrome

MTNR1A:

Melatonin receptor 1A

MTNR1B:

Melatonin receptor 1B

GWAS:

Genome-wide association studies

NFATC2:

Nuclear factor of activated T cells 2

SCP2:

Sterol carrier protein 2

CACNA1C:

Calcium channel, voltage-dependent, L type, alpha 1C subunit

TCRA:

T cell receptor alpha chain

POLE:

Polymerase (DNA directed), epsilon

FAM3D:

Family with sequence similarity 3, member D

ABCC9:

ATP-binding cassette, sub-family C (CFTR/MRP), member 9

SUR2:

Potential sterol desaturase similar to S. cerevisiae

HLA:

Human leukocyte antigen

DQB1:

Major histocompatibility complex, class II, DQ beta 1

PSD:

Partial sleep deprivation

NPAS2:

Neuronal PAS domain protein 2

APSS:

Associated Professional Sleep Societies LLC

FTO:

Fat mass and obesity associated

HOMA-IR:

Homeostasis model assessment- insulin resistance

TMEM18:

Transmembrane protein 18

NRXN3:

Neurexin 3

BMI:

Body mass index

GOLDN:

Genetics of Lipids Lowering Drugs and Diet Network

FAs:

Fatty acids

MUFA:

Monounsaturated fatty acid

SFA:

Saturated fatty acid

MCP1:

Monocyte chemoattractant protein 1

IL-6:

Interleukin 6

PTMs:

Post translational modifications

HAT:

Histone acetile transferase

BMI:

Body mass index

SAT:

Saturated fatty acids

MUFA:

Monounsaturated fatty acids

References

  1. Pietro Cugini (1993) Chronobiology: principles and methods - medical semeiology and methodology copyright: Annali Istituto Superiore di Sanità 29: 483–500

    Google Scholar 

  2. Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism—the epigenetic link. J Cell Sci 123(Pt 22):3837–3848

    Article  PubMed  CAS  Google Scholar 

  3. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109(14):5541–5546

    Article  PubMed  CAS  Google Scholar 

  4. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109(7):2625–2629

    Article  PubMed  CAS  Google Scholar 

  5. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, Gutiérrez-Zotes A, Puigdemont D, Bayés M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Pérez V, Menchón JM, Estivill X, Gratacòs M, Urretavizcaya M (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35(6):1279–1289

    Article  PubMed  CAS  Google Scholar 

  6. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114(2):222–232

    Article  PubMed  CAS  Google Scholar 

  7. Sprouse J, Braselton J, Reynolds L (2006) Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry 60:896–899

    Article  PubMed  CAS  Google Scholar 

  8. Abe M, Herzog ED, Block GD (2000) Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 11:3261–3264

    Article  PubMed  CAS  Google Scholar 

  9. Xu X, Breen G, Chen CK, Huang YS, Wu YY, Asherson P (2010) Association study between a polymorphism at the 3′-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct 6:48

    Article  PubMed  Google Scholar 

  10. Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psychopathological symptoms insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B:35–38

    Article  PubMed  Google Scholar 

  11. Takao T, Tachikawa H, Kawanishi Y, Mizukami K, Asada T (2007) CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: a preliminary study. Eur Neuropsychopharmacol 17:273–276

    Article  PubMed  CAS  Google Scholar 

  12. Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, Colombo C, Smeraldi E (2007) Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 144B:631–635

    Article  PubMed  CAS  Google Scholar 

  13. Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G, Lorenzi C, Colombo C, Smeraldi E (2008) Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 7:20–25

    PubMed  CAS  Google Scholar 

  14. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Okumura T, Tsunoka T, Inada T, Ozaki N, Iwata N (2009) Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci 259:293–297

    Article  PubMed  Google Scholar 

  15. Garaulet M, Sánchez-Moreno C, Smith CE, Lee YC, Nicolás F, Ordovás JM (2011) Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLoS One 6(2):e17435

    Article  PubMed  CAS  Google Scholar 

  16. Lavebratt C, Sjöholm LK, Soronen P, Paunio T, Vawter MP, Bunney WE, Adolfsson R, Forsell Y, Wu JC, Kelsoe JR, Partonen T, Schalling M (2010) CRY2 is associated with depression. PLoS One 5(2):e9407

    Article  PubMed  Google Scholar 

  17. McCarthy MJ, Nievergelt CM, Shekhtman T, Kripke DF, Welsh DK, Kelsoe JR (2011) Functional genetic variation in the Rev-Erbα pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav 10(8):852–861

    Article  PubMed  CAS  Google Scholar 

  18. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, Fukuo Y, Naitoh H, Umene-Nakano W, Inada T, Nakamura J, Ozaki N, Iwata N (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 126(1–2):167–173

    Article  PubMed  CAS  Google Scholar 

  19. Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, Porkka-Heiskanen T, Partonen T, Paunio T (2010) Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5(2):e9259

    Article  PubMed  Google Scholar 

  20. Dauvilliers Y, Tafti M (2008) The genetic basis of sleep disorders. Curr Pharm Des 14(32):3386–3395

    Article  PubMed  CAS  Google Scholar 

  21. Ban HJ, Kim SC, Seo J, Kang HB, Choi JK (2011) Genetic and metabolic characterization of insomnia. PLoS One 6(4):e18455

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, Liu RY, Lei Z, Zhu Y, Huang JA, Jiang X, Liu Z, Liu X, Peng X, Hu H, Zhang HT (2009) Genetic variants in interleukin-6 modified risk of obstructive sleep apnea syndrome. Int J Mol Med 23(4):485–493

    Article  PubMed  CAS  Google Scholar 

  23. Larkin EK, Patel SR, Zhu X, Tracy RP, Jenny NS, Reiner AP, Walston J, Redline S (2010) Study of the relationship between the interleukin-6 gene and obstructive sleep apnea. Clin Transl Sci 3(6):337–339

    Article  PubMed  CAS  Google Scholar 

  24. Miaskowski C, Dodd M, Lee K, West C, Paul SM, Cooper BA, Wara W, Swift PS, Dunn LB, Aouizerat BE (2010) Preliminary evidence of an association between a functional interleukin-6 polymorphism and fatigue and sleep disturbance in oncology patients and their family caregivers. J Pain Symptom Manage 40(4):531–544

    Article  PubMed  CAS  Google Scholar 

  25. Greenberg H, Cohen RI (2012) Nocturnal asthma. Curr Opin Pulm Med 18(1):57–62, Review

    Article  PubMed  Google Scholar 

  26. Vardeny O, Peppard PE, Finn LA, Faraco JH, Mignot E, Hla KM (2011) β2 adrenergic receptor polymorphisms and nocturnal blood pressure dipping status in the Wisconsin Sleep Cohort Study. J Am Soc Hypertens 5(2):114–122

    Article  PubMed  CAS  Google Scholar 

  27. Chen W, Ye J, Han D, Yin G, Wang B, Zhang Y (2012) Association of prepro-orexin polymorphism with obstructive sleep apnea/hypopnea syndrome. Am J Otolaryngol 33(1):31–36

    Article  PubMed  Google Scholar 

  28. Park HJ, Park JK, Kim SK, Cho AR, Kim JW, Yim SV, Chung JH (2011) Association of polymorphism in the promoter of the melatonin receptor 1A gene with schizophrenia and with insomnia symptoms in schizophrenia patients. J Mol Neurosci 45(2):304–308

    Article  PubMed  CAS  Google Scholar 

  29. Olsson L, Pettersen E, Ahlbom A, Carlsson S, Midthjell K, Grill V (2011) No effect by the common gene variant rs10830963 of the melatonin receptor 1B on the association between sleep disturbances and type 2 diabetes: results from the Nord-Trøndelag Health Study. Diabetologia 54(6):1375–1378

    Article  PubMed  CAS  Google Scholar 

  30. Shimada M, Miyagawa T, Kawashima M, Tanaka S, Honda Y, Honda M, Tokunaga K (2010) An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Hum Genet 128(4):433–441

    Article  PubMed  Google Scholar 

  31. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325(5942):866–870

    Article  PubMed  CAS  Google Scholar 

  32. Science News. The ABCC9 of sleep: a genetic factor regulates how long we sleep. Science Daily (Nov. 24, 2011)

    Google Scholar 

  33. Goel N, Dinges DF (2011) Behavioral and genetic markers of sleepiness. J Clin Sleep Med 7(5 Suppl):S19–S21, Review

    PubMed  Google Scholar 

  34. Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD, Skene DJ, von Schantz M (2010) Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 33(5):695–701

    PubMed  Google Scholar 

  35. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk DJ (2009) Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype. J Neurosci 29(25):7948–7956

    Article  PubMed  CAS  Google Scholar 

  36. Kovanen L, Saarikoski ST, Aromaa A, Lönnqvist J, Partonen T (2010) ARNTL (BMAL1) and NPAS2 gene variants contribute to fertility and seasonality. PLoS One 5(4):e10007

    Article  PubMed  Google Scholar 

  37. Science News. Shorter sleep durations may increase genetic risks for obesity. Science Daily (June 15, 2011)

    Google Scholar 

  38. Prats-Puig A, Grau-Cabrera P, Riera-Pérez E, Cortés-Marina R, Fortea E, Soriano-Rodríguez P, de Zegher F, Ibánez L, Bassols J, López-Bermejo A (2012) Variations in the obesity genes FTO, TMEM18 and NRXN3 influence the vulnerability of children to weight gain induced by short sleep duration. Int J Obes (Lond). Doi:10.1038/ijo.2012.27. [Epub ahead of print]

  39. Laposky AD, Shelton J, Bass J et al (2006) Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol 290:R894–R903

    Article  PubMed  CAS  Google Scholar 

  40. Laposky AD, Bradley MA, Williams DL et al (2008) Sleep-wake regulation is alteredin leptin resistant (db/db) genetically obese and diabetic mice. Am J Physiol Regul Integr Comp Physiol 295:R2059–R2066

    Article  PubMed  CAS  Google Scholar 

  41. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  42. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  Google Scholar 

  43. Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ (2007) Metabolic homeostasis in mice with disrupted clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol 293:R1528–R1537

    Article  PubMed  CAS  Google Scholar 

  44. Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K, Okamatsu-Ogura Y, Kimura K, Saito M (2011) Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6(9):e25231

    Article  PubMed  CAS  Google Scholar 

  45. Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ (2008) Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87(6):1606–1615

    PubMed  CAS  Google Scholar 

  46. Scott EM, Carter AM, Grant PJ (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 32(4):658–662

    Article  CAS  Google Scholar 

  47. Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2009) CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr 90(6):1466–1475

    Article  PubMed  CAS  Google Scholar 

  48. Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2010) Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population). Eur J Hum Genet 18(3):364–369

    Article  PubMed  CAS  Google Scholar 

  49. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21(6):569–576

    PubMed  CAS  Google Scholar 

  50. Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptácek LJ (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128(1):59–70

    Article  PubMed  CAS  Google Scholar 

  51. Garaulet M, Corbalán MD, Madrid JA, Morales E, Baraza JC, Lee YC, Ordovas JM (2010) CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes (Lond) 34(3):516–523

    Article  CAS  Google Scholar 

  52. Garaulet M, Corbalán-Tutau MD, Madrid JA, Baraza JC, Parnell LD, Lee YC, Ordovas JM (2010) PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. J Am Diet Assoc 110(6):917–921

    Article  PubMed  CAS  Google Scholar 

  53. Englund A, Kovanen L, Saarikoski ST, Haukka J, Reunanen A, Aromaa A, Lönnqvist J, Partonen T (2009) NPAS2 and PER2 are linked to risk factors of the metabolic syndrome. J Circadian Rhythms 7:5

    Article  PubMed  Google Scholar 

  54. Hatanaka F, Matsubara C, Myung J, Yoritaka T, Kamimura N, Tsutsumi S, Kanai A, Suzuki Y, Sassone-Corsi P, Aburatani H, Sugano S, Takumi T (2010) Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol Cell Biol 30(24):5636–5648

    Article  PubMed  CAS  Google Scholar 

  55. Sookoian S, Gianotti TF, Burgueño A, Pirola CJ (2010) Gene–gene interaction between serotonin transporter (SLC6A4) and CLOCK modulates the risk of metabolic syndrome in rotating shiftworkers. Chronobiol Int 27(6):1202–1218

    Article  PubMed  CAS  Google Scholar 

  56. Garaulet M, Esteban Tardido A, Lee YC, Smith CE, Parnell LD, Ordovás JM (2012) SIRT1 and CLOCK 3111T  >  C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Int J Obes (Lond). Doi:10.1038/ijo.2011.270. [Epub ahead of print]

  57. Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3(12):1241–1247

    Article  PubMed  CAS  Google Scholar 

  58. Fermín I. Milagro, Purificación Gómez-Abellán, Javier Campión, J. Alfredo Martínez, Jose M. Ordovás and Marta Garaulet (2012) CLOCK, PER2 and BMAL1 DNA Methylation: Association with Obesity and Metabolic Syndrome Characteristics and Monounsaturated Fat Intake, Chronobiology International, Early Online: 1–15, Copyright © Informa Healthcare USA, Inc. ISSN 0742-0528 print/1525-6073 online DOI: 10.3109/07420528.2012.719967

    Article  PubMed  CAS  Google Scholar 

  59. Hansen KF, Sakamoto K, Obrietan K (2011) MicroRNAs: a potential interface between the circadian clock and human health. Genome Med 3(2):10

    Article  PubMed  CAS  Google Scholar 

  60. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  PubMed  CAS  Google Scholar 

  61. Yang M, Lee JE, Padgett RW, Edery I (2008) Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9:83

    Article  PubMed  Google Scholar 

  62. Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HY (2011) MiRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 20:731–751

    Article  PubMed  CAS  Google Scholar 

  63. Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19:4017–4025

    Article  PubMed  CAS  Google Scholar 

  64. Monteleone P, Tortorella A, Docimo L, Maldonato MN, Canestrelli B, De Luca L, Maj M (2008) Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci Lett 435:30–33

    Article  PubMed  CAS  Google Scholar 

  65. Tortorella A, Monteleone P, Martiadis V, Perris F, Maj M (2007) The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: a preliminary study. Am J Med Genet B Neuropsychiatr Genet 144B:992–995

    Article  PubMed  CAS  Google Scholar 

  66. Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104:14412–14417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garaulet, M., Ordovás, J.M. (2013). Genetics in Chronobiology and Obesity. In: Garaulet, M., Ordovás, J. (eds) Chronobiology and Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5082-5_8

Download citation

Publish with us

Policies and ethics