Skip to main content

Obesity and Chronodisruption: An Imbalance Between Energy Intake and Expenditure

  • Chapter
  • First Online:
Chronobiology and Obesity
  • 1484 Accesses

Abstract

Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR) and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This chapter will focus on chronodisruption and feeding regimens with implications for obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyatt SB, Winters KP, Dubbert PM (2006) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 331:166–174

    Article  PubMed  Google Scholar 

  2. Oishi K, Shirai H, Ishida N (2005) CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J 386:575–581

    Article  PubMed  CAS  Google Scholar 

  3. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  4. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  PubMed  CAS  Google Scholar 

  5. Froy O (2010) Metabolism and circadian rhythms—implications for obesity. Endocr Rev 31:1–24

    Article  PubMed  CAS  Google Scholar 

  6. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17:2100–2102

    Article  Google Scholar 

  7. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  8. Penev PD, Kolker DE, Zee PC, Turek FW (1998) Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol 275:H2334–H2337

    PubMed  CAS  Google Scholar 

  9. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    Article  PubMed  CAS  Google Scholar 

  10. Filipski E, King VM, Li X, Granda TG, Mormont MC, Claustrat B, Hastings MH, Levi F (2003) Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol 51:216–219

    Article  PubMed  Google Scholar 

  11. Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17:539–545

    Article  PubMed  Google Scholar 

  12. Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Article  PubMed  CAS  Google Scholar 

  13. Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    Article  PubMed  CAS  Google Scholar 

  14. Garaulet M, Madrid JA (2010) Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 62:967–978

    Article  PubMed  CAS  Google Scholar 

  15. Hirota T, Fukada Y (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci 21:359–368

    Article  PubMed  Google Scholar 

  16. Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18:4–11

    Article  PubMed  CAS  Google Scholar 

  17. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM (1999) A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol 11:643–652

    Article  PubMed  Google Scholar 

  18. La Fleur SE (2003) Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 15:315–322

    Article  PubMed  Google Scholar 

  19. Davidson AJ, Castanon-Cervantes O, Stephan FK (2004) Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int 24:179–186

    Article  PubMed  Google Scholar 

  20. Ramsey KM, Marcheva B, Kohsaka A, Bass J (2007) The clockwork of metabolism. Annu Rev Nutr 27:219–240

    Article  PubMed  CAS  Google Scholar 

  21. Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, Kalsbeek A, Feenstra M, Pevet P, Buijs RM (2005) The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur J Neurosci 22:2531–2540

    Article  PubMed  Google Scholar 

  22. Kalsbeek A, Ruiter M, La Fleur SE, Cailotto C, Kreier F, Buijs RM (2006) The hypothalamic clock and its control of glucose homeostasis. Prog Brain Res 153:283–307

    Article  PubMed  CAS  Google Scholar 

  23. Yamazaki S, Ishida Y, Inouye S (1994) Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat—negative correlation with electrical activity. Brain Res 664:237–240

    Article  PubMed  CAS  Google Scholar 

  24. Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM (2003) The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52:1709–1715

    Article  PubMed  CAS  Google Scholar 

  25. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146:5631–5636

    Article  PubMed  CAS  Google Scholar 

  26. De Boer SF, Van der Gugten J (1987) Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats. Physiol Behav 40:323–328

    Article  PubMed  Google Scholar 

  27. Ahima RS, Prabakaran D, Flier JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 101:1020–1027

    Article  PubMed  CAS  Google Scholar 

  28. Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F Jr, Krueger JM (2004) Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 287:R1071–R1079

    Article  PubMed  CAS  Google Scholar 

  29. Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS (2003) Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept 111:1–11

    Article  PubMed  CAS  Google Scholar 

  30. Downs JL, Urbanski HF (2006) Aging-related sex-dependent loss of the circulating leptin 24-h rhythm in the rhesus monkey. J Endocrinol 190:117–127

    Article  PubMed  CAS  Google Scholar 

  31. Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142:2677–2685

    Article  PubMed  CAS  Google Scholar 

  32. Sukumaran S, Almon RR, DuBois DC, Jusko WJ (2010) Circadian rhythms in gene expression: Relationship to physiology, disease, drug disposition and drug action. Adv Drug Deliv Rev 62:904–917

    Article  PubMed  CAS  Google Scholar 

  33. Shen J, Tanida M, Niijima A, Nagai K (2007) In vivo effects of leptin on autonomic nerve activity and lipolysis in rats. Neurosci Lett 416:193–197

    Article  PubMed  CAS  Google Scholar 

  34. Licinio J (1998) Longitudinally sampled human plasma leptin and cortisol concentrations are inversely correlated. J Clin Endocrinol Metab 83:1042

    Article  PubMed  CAS  Google Scholar 

  35. Heptulla R, Smitten A, Teague B, Tamborlane WV, Ma YZ, Caprio S (2001) Temporal patterns of circulating leptin levels in lean and obese adolescents: relationships to insulin, growth hormone, and free fatty acids rhythmicity. J Clin Endocrinol Metab 86:90–96

    Article  PubMed  CAS  Google Scholar 

  36. Guan XM, Hess JF, Yu H, Hey PJ, van der Ploeg LH (1997) Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol 133:1–7

    Article  PubMed  CAS  Google Scholar 

  37. Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM (2006) Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 147:283–294

    Article  PubMed  CAS  Google Scholar 

  38. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  PubMed  CAS  Google Scholar 

  39. Oishi K, Ohkura N, Wakabayashi M, Shirai H, Sato K, Matsuda J, Atsumi G, Ishida N (2006) CLOCK is involved in obesity-induced disordered fibrinolysis in ob/ob mice by regulating PAI-1 gene expression. J Thromb Haemost 4:1774–1780

    Article  PubMed  CAS  Google Scholar 

  40. Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  PubMed  CAS  Google Scholar 

  41. Gorman MR (2003) Differential effects of multiple short day lengths on body weights of gonadectomized siberian hamsters. Physiol Biochem Zool 76:398–405

    Article  PubMed  Google Scholar 

  42. Morgan PJ, Ross AW, Mercer JG, Barrett P (2003) Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol 177:27–34

    Article  PubMed  CAS  Google Scholar 

  43. Bocquier F, Bonnet M, Faulconnier Y, Guerre-Millo M, Martin P, Chilliard Y (1998) Effects of photoperiod and feeding level on perirenal adipose tissue metabolic activity and leptin synthesis in the ovariectomized ewe. Reprod Nutr Dev 38:489–498

    Article  PubMed  CAS  Google Scholar 

  44. Faulconnier Y, Bonnet M, Bocquier F, Leroux C, Chilliard Y (2001) Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-pregnant sheep. Br J Nutr 85:299–306

    Article  PubMed  CAS  Google Scholar 

  45. Di Lorenzo L, De Pergola G, Zocchetti C, L’Abbate N, Basso A, Pannacciulli N, Cignarelli M, Giorgino R, Soleo L (2003) Effect of shift work on body mass index: results of a study performed in 319 glucose-tolerant men working in a Southern Italian industry. Int J Obes Relat Metab Disord 27:1353–1358

    Article  PubMed  Google Scholar 

  46. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med 58:747–752

    Article  PubMed  CAS  Google Scholar 

  47. Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS (2003) Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health 76:424–430

    Article  PubMed  Google Scholar 

  48. Perfetto F, Tarquini R, Cornelissen G, Mello G, Tempestini A, Gaudiano P, Mancuso F, Halberg F (2004) Circadian phase difference of leptin in android versus gynoid obesity. Peptides 25:1297–1306

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  50. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  PubMed  CAS  Google Scholar 

  51. Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843

    Article  PubMed  CAS  Google Scholar 

  52. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A 101:10434–10439

    Article  PubMed  CAS  Google Scholar 

  53. Puchalski SS, Green JN, Rasmussen DD (2003) Melatonin effect on rat body weight regulation in response to high-fat diet at middle age. Endocrine 21:163–167

    Article  PubMed  CAS  Google Scholar 

  54. Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    PubMed  Google Scholar 

  55. Cassone VM, Stephan FK (2002) Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight. Nutrition 18:814–819

    Article  PubMed  Google Scholar 

  56. Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    Article  PubMed  Google Scholar 

  57. Honma KI, Honma S, Hiroshige T (1983) Critical role of food amount for prefeeding corticosterone peak in rats. Am J Physiol 245:R339–R344

    PubMed  CAS  Google Scholar 

  58. Grasl-Kraupp B, Bursch W, Ruttkay-Nedecky B, Wagner A, Lauer B, Schulte-Hermann R (1994) Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. Proc Natl Acad Sci U S A 91:9995–9999

    Article  PubMed  CAS  Google Scholar 

  59. Froy O, Chapnik N, Miskin R (2006) Long-lived alphaMUPA transgenic mice exhibit pronounced circadian rhythms. Am J Physiol Endocrinol Metab 291:E1017–E1024

    Article  PubMed  CAS  Google Scholar 

  60. Saito M, Murakami E, Suda M (1976) Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake. Biochim Biophys Acta 421:177–179

    Article  PubMed  CAS  Google Scholar 

  61. Comperatore CA, Stephan FK (1987) Entrainment of duodenal activity to periodic feeding. J Biol Rhythms 2:227–242

    Article  PubMed  CAS  Google Scholar 

  62. Stephan FK, Swann JM, Sisk CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25:346–363

    Article  PubMed  CAS  Google Scholar 

  63. Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  PubMed  CAS  Google Scholar 

  64. Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278

    Article  PubMed  CAS  Google Scholar 

  65. Oishi K, Miyazaki K, Ishida N (2002) Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and Bmal1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background. Biochem Biophys Res Commun 298:198–202

    Article  PubMed  CAS  Google Scholar 

  66. Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S (2005) Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Neuroscience 134:335–343

    Article  PubMed  CAS  Google Scholar 

  67. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  68. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  69. Lin JD, Liu C, Li S (2008) Integration of energy metabolism and the mammalian clock. Cell Cycle 7:453–457

    Article  PubMed  CAS  Google Scholar 

  70. Boulamery-Velly A, Simon N, Vidal J, Mouchet J, Bruguerolle B (2005) Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats. Chronobiol Int 22:489–498

    Article  PubMed  CAS  Google Scholar 

  71. Hirao J, Arakawa S, Watanabe K, Ito K, Furukawa T (2006) Effects of restricted feeding on daily fluctuations of hepatic functions including p450 monooxygenase activities in rats. J Biol Chem 281:3165–3171

    Article  PubMed  CAS  Google Scholar 

  72. Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J, le Coutre J, Froy O (2011) Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med 15:2745–2759

    Article  PubMed  CAS  Google Scholar 

  73. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103:12150–12155

    Article  PubMed  CAS  Google Scholar 

  74. Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  PubMed  CAS  Google Scholar 

  75. Landry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290:R1527–R1534

    Article  PubMed  CAS  Google Scholar 

  76. Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE (2007) The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J Biol Rhythms 22:467–478

    Article  PubMed  Google Scholar 

  77. Davidson AJ, Cappendijk SL, Stephan FK (2000) Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am J Physiol Regul Integr Comp Physiol 278:R1296–R1304

    PubMed  CAS  Google Scholar 

  78. Mistlberger RE, Mumby DG (1992) The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav Brain Res 47:159–168

    Article  PubMed  CAS  Google Scholar 

  79. Mendoza J, Angeles-Castellanos M, Escobar C (2005) Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats. Behav Brain Res 158:133–142

    Article  PubMed  Google Scholar 

  80. Davidson AJ (2006) Search for the feeding-entrainable circadian oscillator: a complex proposition. Am J Physiol Regul Integr Comp Physiol 290:R1524–R1526

    Article  PubMed  CAS  Google Scholar 

  81. Mistlberger RE, Marchant EG (1999) Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat. Physiol Behav 66:329–335

    Article  PubMed  CAS  Google Scholar 

  82. Pitts S, Perone E, Silver R (2003) Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am J Physiol Regul Integr Comp Physiol 285:R57–R67

    PubMed  CAS  Google Scholar 

  83. Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T, Yamazaki S (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLoS One 4:e4860

    Article  PubMed  CAS  Google Scholar 

  84. Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106:6808–6813

    Article  PubMed  CAS  Google Scholar 

  85. Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E (2006) Lack of food anticipation in Per2 mutant mice. Curr Biol 16:2016–2022

    Article  PubMed  CAS  Google Scholar 

  86. Mistlberger RE (2006) Circadian rhythms: perturbing a food-entrained clock. Curr Biol 16:R968–R969

    Article  PubMed  CAS  Google Scholar 

  87. Masoro EJ, Shimokawa I, Higami Y, McMahan CA, Yu BP (1995) Temporal pattern food intake not a factor in the retardation of aging processes by dietary restriction. J Gerontol A Biol Sci Med Sci 50A:B48–B53

    Article  PubMed  CAS  Google Scholar 

  88. Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17:313–321

    Article  PubMed  CAS  Google Scholar 

  89. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    Article  PubMed  CAS  Google Scholar 

  90. Weindruch R, Sohal RS (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Eng J Med 337:986–994

    Article  CAS  Google Scholar 

  91. Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811

    Article  PubMed  CAS  Google Scholar 

  92. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK (2004) Aging in rhesus monkeys: relevance to human health interventions. Science 305:1423–1426

    Article  PubMed  CAS  Google Scholar 

  93. Challet E, Caldelas I, Graff C, Pevet P (2003) Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384:711–719

    Article  PubMed  CAS  Google Scholar 

  94. Challet E, Solberg LC, Turek FW (1998) Entrainment in calorie-restricted mice: conflicting zeitgebers and free-running conditions. Am J Physiol 274:R1751–R1761

    PubMed  CAS  Google Scholar 

  95. Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514–1522

    Article  PubMed  CAS  Google Scholar 

  96. Resuehr D, Olcese J (2005) Caloric restriction and melatonin substitution: effects on murine circadian parameters. Brain Res 1048:146–152

    Article  PubMed  CAS  Google Scholar 

  97. Mendoza J, Drevet K, Pevet P, Challet E (2008) Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. J Neuroendocrinol 20(2):251–260

    Article  PubMed  CAS  Google Scholar 

  98. Froy O, Chapnik N, Miskin R (2008) Relationship between calorie restriction and the biological clock: lessons from long-lived transgenic mice. Rejuvenation Res 11:467–471

    Article  PubMed  Google Scholar 

  99. Froy O, Miskin R (2010) Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany N Y) 2:7–27

    CAS  Google Scholar 

  100. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A 100:6216–6220

    Article  PubMed  CAS  Google Scholar 

  101. Descamps O, Riondel J, Ducros V, Roussel AM (2005) Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting. Mech Ageing Dev 126:1185–1191

    Article  PubMed  CAS  Google Scholar 

  102. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N (1990) Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev 55:69–87

    Article  PubMed  CAS  Google Scholar 

  103. Contestabile A, Ciani E (2004) Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 1002:162–166

    Article  PubMed  CAS  Google Scholar 

  104. Mattson MP (2005) Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr 25:237–260

    Article  PubMed  CAS  Google Scholar 

  105. Sharma S, Kaur G (2005) Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats. Brain Res Bull 67:482–491

    Article  PubMed  CAS  Google Scholar 

  106. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115–3121

    Article  PubMed  Google Scholar 

  107. Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR, Mattson MP (2006) Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J 20:631–637

    Article  PubMed  CAS  Google Scholar 

  108. Mattson MP, Duan W, Wan R, Guo Z (2004) Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx 1:111–116

    Article  PubMed  Google Scholar 

  109. Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48

    Article  PubMed  Google Scholar 

  110. Froy O, Chapnik N, Miskin R (2009) Effect of intermittent fasting on circadian rhythms in mice depends on feeding time. Mech Ageing Dev 130:154–160

    Article  PubMed  CAS  Google Scholar 

  111. Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23:905–914

    Article  PubMed  CAS  Google Scholar 

  112. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  PubMed  CAS  Google Scholar 

  113. Havel PJ, Townsend R, Chaump L, Teff K (1999) High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes 48:334–341

    Article  PubMed  CAS  Google Scholar 

  114. Cha MC, Chou CJ, Boozer CN (2000) High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats. Metabolism 49:503–507

    Article  PubMed  CAS  Google Scholar 

  115. Cano P, Jimenez-Ortega V, Larrad A, Reyes Toso CF, Cardinali DP, Esquifino AI (2008) Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33:118–125

    Article  PubMed  CAS  Google Scholar 

  116. Barnea M, Madar Z, Froy O (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150:161–168

    Article  PubMed  CAS  Google Scholar 

  117. Barnea M, Madar Z, Froy O (2010) High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 18:230–238

    Article  CAS  Google Scholar 

  118. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  CAS  Google Scholar 

  119. Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH (2007) Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPER2. J Biol Chem 282:20794–20798

    Article  PubMed  CAS  Google Scholar 

  120. Mendoza J, Pevet P, Challet E (2008) High-fat feeding alters the clock synchronization to light. J Physiol 586:5901–5910

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Froy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Froy, O. (2013). Obesity and Chronodisruption: An Imbalance Between Energy Intake and Expenditure. In: Garaulet, M., Ordovás, J. (eds) Chronobiology and Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5082-5_5

Download citation

Publish with us

Policies and ethics