Skip to main content

A Robust Deformable Model for 3D Segmentation of the Left Ventricle from Ultrasound Data

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 30))

Abstract

This paper presents a novel bottom-up deformable-based model for the segmentation of the Left Ventricle (LV) in 3D ultrasound data. The methodology presented here is based on Probabilistic Data Association Filter (PDAF). The main steps that characterize the proposed approach can be summarized as follows. After a rough initialization given by the user, the following steps are performed: (1) low-level transition edge points are detected based on a prior model for the intensity of the LV, (2) middle-level features or patch formation is accomplished by linking the low-level information, (3) data interpretations are computed (hypothesis) based on the reliability (belonging or not to the LV boundary) of the previously obtained patches, (4) a confidence degree is assigned to each data interpretation and the model is updated taking into account all data interpretations.Results testify the usefulness of the approach in both synthetic and real LV volumes data. The obtained LV segmentations are compared with expert’s manual segmentations, yielding an average distance of 3 mm between them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22, 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Associaton. Academic, New York (1988)

    Google Scholar 

  3. Blake, A., Isard, M.: Active Contour. Springer, Berlin (1998)

    Book  Google Scholar 

  4. Bernard, O., Touil, B., Gelas, A., Prost, R., Friboulet, D.: A rbf-based multiphase level set method for segmentation in echocardiography using the statistics of the radiofrequency signal, IEEE International Conference on Image Processing (ICIP) 3, III-157-III-160 (2007)

    Google Scholar 

  5. Bernard, O., Friboulet, D., Thevenaz, P., Unser, M.: Variational b-spline level-set: A linear filtering approach for fast deformable model evolution. IEEE Trans. Imag. Proc. 18(6), 1179–1991 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imag. 21(11), 1374–1383 (2002)

    Article  Google Scholar 

  7. Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imag. 21(11), 1374–1383 (2002)

    Article  Google Scholar 

  8. Carneiro, G., Nascimento, J.C.: Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2815–2822 (2010)

    Google Scholar 

  9. Carneiro, G., Georgescu, B., Good, S., Comaniciu, D.: Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans. Med. Imag. 27(9), 1342–1355 (2008)

    Article  Google Scholar 

  10. Chan, K., Veinot, J.P.: Anatomic Basis of Echocardiographic Diagnosis, 1st edn. Oxford Univesity Press, Oxford (2011)

    Book  Google Scholar 

  11. Chen, T., Babb, J., Kellman, P., Axel, L., Kim, D.: Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans. Med. Imag. 27(8), 1084–1094 (2008)

    Article  Google Scholar 

  12. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models – their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995)

    Article  Google Scholar 

  13. Cootes, T., Beeston, C., Edwards, G., Taylor, C.: A unified framework for atlas matching using active appearance models, Information Processing in Medical Imaging, Lecture Notes in Computer Science 1613/1999, 322–333 (1999)

    Google Scholar 

  14. Cremers, D., Osher, S., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vision 69(3), 335–351 (2006)

    Article  Google Scholar 

  15. Debreuve, E., Barlaud, M., Aubert, G., Laurette, I., Darcourt, J.: Space-time segmentation using level set active contours applied to myocardial gated SPECT. IEEE Trans. Med. Imag. 20(7), 643–659 (2001)

    Article  Google Scholar 

  16. Delingette, H.: General Object Reconstruction Based on Simplex Meshes. In: International Journal of Computer Vision, 32(2), 111–146 (1999)

    Article  Google Scholar 

  17. Duan, Q., Angelini, E.D., Laine, A.: Real time segmentation by active geometric functions. Comput. Meth. Prog. Biomed. 98(3), 223–230 (2010)

    Article  Google Scholar 

  18. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: Conference on Computer Vision and Pattern Rec (CVPR) (2005)

    Google Scholar 

  20. Hammoude, A.: Endocardial border identification in two-dimensional echocardiographic images: review of methods. Comput. Med. Imag. Graph. 22(3), 181–193 (1998)

    Article  Google Scholar 

  21. Hang, X., Greenberg, N.L., Thomas, J.D.: Left ventricle quantification in 3D echocardiography using a geometric deformable model. In: Computers in Cardiology, 31, 649–652 (2004)

    Article  Google Scholar 

  22. Yu, H., Pattichis, M.S., Goens, M.B.: Robust Segmentation and Volumetric Registration in a Multi-view 3D Freehand Ultrasound Reconstruction System, Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC), 1978–1982 (2006)

    Google Scholar 

  23. Huttenlocher, D.P., Ullman, S.: Recognizing solid objects by alignment with an image. Int. J. Comput. Vision 5(2) (1990)

    Google Scholar 

  24. Juang, R., McVeigh, E., Hoffmann, B., Yuh, D., Burlina, P.: Automatic segmentation of the left-ventricular cavity and atrium in 3d ultrasound using graph cuts and the radial symmetry transform. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 606–609 (2011)

    Google Scholar 

  25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vision 4(1), 321–331 (1987)

    Google Scholar 

  26. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: Seventh IEEE International Conference on Computer Vision, 1, 307–314 (1999)

    Article  Google Scholar 

  27. Lin, N., Yu, W., Duncan, J.: Combinative multi-scale level set framework for echocardiographic image segmentation. Med. Imag. Anal. 7(4), 529–537 (2003)

    Article  Google Scholar 

  28. Lynch, M., Ghita, O., Whelan, P.F.: Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans. Med. Imag. 27(2), 195–203 (2008)

    Article  Google Scholar 

  29. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Article  Google Scholar 

  30. Mitchell, S., Lelieveldt, B., van der Geest, R., Bosch, H., Reiber, J., Sonka, M.: Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images. IEEE Trans. Med. Imag. 20(5), 415–423 (2001)

    Article  Google Scholar 

  31. Nascimento, J.C., Marques, J.S.: Robust shape tracking in the presence of cluttered background. In: IEEE Transactions on Multimedia, 6(6), 852–861 (2004)

    Article  Google Scholar 

  32. Nascimento, J.C., Marques, J.S.: Robust shape tracking with multiple models in ultrasound images. IEEE Trans. Imag. Proc. 17(3), 392–406 (2008)

    Article  MathSciNet  Google Scholar 

  33. Nillesen, M.M., Lopata, R.G.P., Gerrits, I.H., Kapusta, L., Huisman, H.J., Thijssen, J.M., de Korte, C.L.: 3D Segmentation of the Heart Muscle in Real-Time 3D Echocardiographic Sequences Using Image Statistics. In: IEEE Ultrasonics Symposium, 1987–1990 (2006)

    Google Scholar 

  34. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Trans. Med. Imag. 25(8), 987–1010 (2006)

    Article  Google Scholar 

  35. Orderud, F., Hansgård, J., Rabben, S.I.: Real-time tracking of the left ventricle in 3d echocardiography using a state estimation approach. In: Proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I, MICCAI’07, pp. 858–865. Springer, Berlin (2007)

    Google Scholar 

  36. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imag. 22(6), 773–776 (2003)

    Article  Google Scholar 

  37. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  38. Santiago, C., Marques, J.S., Nascimento, J.C.: Robust Deformable Model for Segmenting the Left Ventricle in 3D Volumes of Ultrasound Data. In: International Conference on Pattern Recognition Applications and Methods, (2012) (to be published by Elsevier in ICPRAM’12 February)

    Google Scholar 

  39. Sarti, A., Corsi, C., Mazzini, E., Lamberti, C.: Maximum likelihood segmentation of ultrasound images with rayleigh distribution. IEEE Trans. Ultrason. Ferroelect. Frequen. Contr. 52(6), 947–960 (2005)

    Article  Google Scholar 

  40. Scowen, B., Smith, S., Vannan, M.: Quantitative 3d modelling of the left ventrical from ultrasound images. Euromicro Conf. 2, 432–439 (2000)

    Google Scholar 

  41. Sonka, M., Zhang, X., Siebes, M., Bissing, M., Dejong, S., Collins, S., Mckay, C.: Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Trans. Med. Imag. 14, 719–732 (1995)

    Article  Google Scholar 

  42. Yang L., Georgescu, B., Zheng, Y., Meer, P., Comaniciu, D.: 3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In: IEEE Conference on Computer Vision and Pattern Recognition, 1–8 (2008)

    Google Scholar 

  43. Yang, L., Georgescu, B., Zheng, Y., Wang, Y., Meer, P., Comaniciu, D.: Prediction based collaborative trackers (pct): A robust and accurate approach toward 3d medical object tracking. IEEE Trans. Med. Imag. 30, 1921–1932 (2011)

    Article  Google Scholar 

  44. Zagrodsky, V., Walimbe, V., Castro-Pareja, C., Qin, J.X., Song, J.-M., Shekhar, R.: Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models. IEEE Trans. Med. Imag. 24(9), 1089–1099 (2005)

    Article  Google Scholar 

  45. Zhang, L., Geiser, E.: An effective algorithm for extracting serial endocardial borders from 2-d echocardiograms. IEEE Trans. Biomed. Eng. BME-31, 441–447 (1984)

    Article  Google Scholar 

  46. Zhou, X.S., Comaniciu, D., Gupta, A.: An information fusion framework for robust shape tracking. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 115–129 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by project [PTDC/EEA-CRO/103462/2008] (project HEARTRACK) and FCT [PEst-OE/EEI/LA0009/2011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Santiago, C., Marques, J.S., Nascimento, J.C. (2013). A Robust Deformable Model for 3D Segmentation of the Left Ventricle from Ultrasound Data. In: Latorre Carmona, P., Sánchez, J., Fred, A. (eds) Mathematical Methodologies in Pattern Recognition and Machine Learning. Springer Proceedings in Mathematics & Statistics, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5076-4_11

Download citation

Publish with us

Policies and ethics