Skip to main content

On the Development of Vaccine Antigen Databases: Progress, Opportunity, and Challenge

  • Chapter
  • First Online:
Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines

Part of the book series: Immunomics Reviews: ((IMMUN,volume 5))

  • 1325 Accesses

Abstract

The accumulation of relevant and appropriate data is the essential preliminary to any successful informatics-based exercise in prediction. Without quality data, meaningful prediction is impossible. This is as true in immunobiology as it is in any other branch of the natural sciences. Within the context of vaccine discovery, the accumulation, storage, and retrieval of immunological data within publically accessible repositories, typically web-based databases, is of overwhelming operational importance. Specifically, and with the special reference to the discovery of subunit vaccines, this chapter explores the current state and status of immunological databases focussed on immunogenic proteins, primarily pathogen antigens and environmental allergens. It sets this exploration firmly into context by simultaneously scoping out the rather more mature backdrop provided by epitope-orientated database systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flower DR (2007) Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol Biol 409:1–15

    Article  PubMed  CAS  Google Scholar 

  2. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132(2):211–250

    Article  PubMed  CAS  Google Scholar 

  3. Lefranc MP (2011) IMGT, the international ImMunoGeneTics information system. Cold Spring Harb Protoc 2011(6):595–603

    PubMed  Google Scholar 

  4. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J et al (2009) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 37:D1006–D1012, Database issue

    Article  PubMed  CAS  Google Scholar 

  5. Lefranc MP (2008) IMGT, the International ImMunoGeneTics Information System for Immunoinformatics: methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics. Mol Biotechnol 40(1):101–111

    Article  PubMed  CAS  Google Scholar 

  6. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG (2011) The IMGT/HLA database. Nucleic Acids Res 39:D1171–D1176, Database issue

    Article  PubMed  Google Scholar 

  7. Robinson J, Waller MJ, Fail SC, McWilliam H, Lopez R, Parham P, Marsh SG (2009) The IMGT/HLA database. Nucleic Acids Res 37:D1013–D1017, Database issue

    Article  PubMed  CAS  Google Scholar 

  8. Retter I, Althaus HH, Munch R, Muller W (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33:D671–D674, Database issue

    Article  PubMed  CAS  Google Scholar 

  9. Robinson J, Marsh SG (2007) IPD: the immuno polymorphism database. Methods Mol Biol 409:61–74

    Article  PubMed  CAS  Google Scholar 

  10. Robinson J, Mistry K, McWilliam H, Lopez R, Marsh SG (2010) IPD–the immuno polymorphism database. Nucleic Acids Res 38:D863–D869, Database issue

    Article  PubMed  CAS  Google Scholar 

  11. Robinson J, Waller MJ, Fail SC, Marsh SG (2006) The IMGT/HLA and IPD databases. Hum Mutat 27(12):1192–1199

    Article  PubMed  CAS  Google Scholar 

  12. Robinson J, Waller MJ, Stoehr P, Marsh SG (2005) IPD–the immuno polymorphism database. Nucleic Acids Res 33:D523–D526, Database issue

    Article  PubMed  CAS  Google Scholar 

  13. Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93

    Article  PubMed  CAS  Google Scholar 

  14. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  PubMed  CAS  Google Scholar 

  15. Sette A, Sidney J, del Guercio MF, Southwood S, Ruppert J, Dahlberg C, Grey HM, Kubo RT (1994) Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol 31(11):813–822

    Article  PubMed  CAS  Google Scholar 

  16. Sidney J, Oseroff C, del Guercio MF, Southwood S, Krieger JI, Ishioka GY, Sakaguchi K, Appella E, Sette A (1994) Definition of a DQ3.1-specific binding motif. J Immunol 152(9):4516–4525

    PubMed  CAS  Google Scholar 

  17. Kubo RT, Sette A, Grey HM, Appella E, Sakaguchi K, Zhu NZ, Arnott D, Sherman N, Shabanowitz J, Michel H et al (1994) Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 152(8):3913–3924

    PubMed  CAS  Google Scholar 

  18. DiBrino M, Parker KC, Margulies DH, Shiloach J, Turner RV, Biddison WE, Coligan JE (1994) The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 269(51):32426–32434

    PubMed  CAS  Google Scholar 

  19. Parker KC, Biddison WE, Coligan JE (1994) Pocket mutations of HLA-B27 show that anchor residues act cumulatively to stabilize peptide binding. Biochemistry 33(24):7736–7743

    Article  PubMed  CAS  Google Scholar 

  20. DiBrino M, Parker KC, Shiloach J, Turner RV, Tsuchida T, Garfield M, Biddison WE, Coligan JE (1994) Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 152(2):620–631

    PubMed  CAS  Google Scholar 

  21. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175

    PubMed  CAS  Google Scholar 

  22. Brusic V, Rudy G, Harrison LC (1998) MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res 26(1):368–371

    Article  PubMed  CAS  Google Scholar 

  23. Brusic V, Rudy G, Kyne AP, Harrison LC (1997) MHCPEP, a database of MHC-binding peptides: update 1996. Nucleic Acids Res 25(1):269–271

    Article  PubMed  CAS  Google Scholar 

  24. Brusic V, Rudy G, Kyne AP, Harrison LC (1996) MHCPEP–a database of MHC-binding peptides: update 1995. Nucleic Acids Res 24(1):242–244

    Article  PubMed  CAS  Google Scholar 

  25. Brusic V, Rudy G, Harrison LC (1994) MHCPEP: a database of MHC-binding peptides. Nucleic Acids Res 22(17):3663–3665

    Article  PubMed  CAS  Google Scholar 

  26. Hon L, Abernethy NF, Brusic V, Chai J, Altman RB (1998) MHCWeb: converting a WWW database into a knowledge-based collaborative environment. Proc AMIA Symp :947–951

    Google Scholar 

  27. Schonbach C, Koh JLY, Flower DR, Brusic V (2005) An update on the functional molecular immunology (FIMM) database. Appl Bioinformatics 4(1):25–31

    Article  PubMed  CAS  Google Scholar 

  28. Schonbach C, Koh JLY, Flower DR, Wong L, Brusic V (2002) FIMM, a database of functional molecular immunology: update 2002. Nucleic Acids Res 30(1):226–229

    Article  PubMed  Google Scholar 

  29. Schonbach C, Koh JL, Sheng X, Wong L, Brusic V (2000) FIMM, a database of functional molecular immunology. Nucleic Acids Res 28(1):222–224

    Article  PubMed  CAS  Google Scholar 

  30. Reche PA, Zhang H, Glutting JP, Reinherz EL (2005) EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21(9):2140–2141

    Article  PubMed  CAS  Google Scholar 

  31. Sathiamurthy M, Hickman HD, Cavett JW, Zahoor A, Prilliman K, Metcalf S, Fernandez Vina M, Hildebrand WH (2003) Population of the HLA ligand database. Tissue Antigens 61(1):12–19

    Article  PubMed  CAS  Google Scholar 

  32. Khan JM, Cheruku HR, Tong JC, Ranganathan S (2011) MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures. Bioinformatics 27(8):1192–1193

    Article  PubMed  CAS  Google Scholar 

  33. Tong JC, Kong L, Tan TW, Ranganathan S (2006) MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions. Appl Bioinformatics 5(2):111–114

    Article  PubMed  CAS  Google Scholar 

  34. Govindarajan KR, Kangueane P, Tan TW, Ranganathan S (2003) MPID: MHC-Peptide Interaction Database for sequence-structure-function information on peptides binding to MHC molecules. Bioinformatics 19(2):309–310

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR (2011) Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 39:D913–D919, Database issue

    Article  PubMed  Google Scholar 

  36. Middleton D, Menchaca L, Rood H, Komerofsky R (2003) New allele frequency database: http://www.allelefrequencies.net. Tissue Antigens 61(5):403–407

    Article  PubMed  CAS  Google Scholar 

  37. Saha S, Raghava GP (2007) Searching and mapping of B-cell epitopes in Bcipep database. Methods Mol Biol 409:113–124

    Article  PubMed  CAS  Google Scholar 

  38. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79

    Article  PubMed  Google Scholar 

  39. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7

    Article  PubMed  CAS  Google Scholar 

  40. Singh MK, Srivastava S, Raghava GP, Varshney GC (2006) HaptenDB: a comprehensive database of haptens, carrier proteins and anti-hapten antibodies. Bioinformatics 22(2):253–255

    Article  PubMed  CAS  Google Scholar 

  41. Kuiken C, Korber B, Shafer RW (2003) HIV sequence databases. AIDS Rev 5(1):52–61

    PubMed  Google Scholar 

  42. Yusim K, Richardson R, Tao N, Dalwani A, Agrawal A, Szinger J, Funkhouser R, Korber B, Kuiken C (2005) Los alamos hepatitis C immunology database. Appl Bioinformatics 4(4):217–225

    Article  PubMed  CAS  Google Scholar 

  43. Toseland CP, Clayton DJ, McSparron H, Hemsley SL, Blythe MJ, Paine K, Doytchinova IA, Guan P, Hattotuwagama CK, Flower DR (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1(1):4

    Article  PubMed  Google Scholar 

  44. Lata S, Bhasin M, Raghava GP (2009) MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes. BMC Res Notes 2:61

    Article  PubMed  Google Scholar 

  45. Bhasin M, Singh H, Raghava GP (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19(5):665–666

    Article  PubMed  CAS  Google Scholar 

  46. Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3(3):e91

    Article  PubMed  Google Scholar 

  47. Sette A (2004) The immune epitope database and analysis resource: from vision to blueprint. Genome Inform 15(2):299

    PubMed  Google Scholar 

  48. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862, Database issue

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J et al (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518, Web Server issue

    Article  PubMed  CAS  Google Scholar 

  50. Wassenaar TM, Gaastra W (2001) Bacterial virulence: can we draw the line? FEMS Microbiol Lett 201(1):1–7

    Article  PubMed  CAS  Google Scholar 

  51. Ansari HR, Flower DR, Raghava GPS (2010) AntigenDB: an immunoinformatics database of pathogen antigens. Nucleic Acids Res 38:D847–D853

    Article  PubMed  CAS  Google Scholar 

  52. Xiang Z, Todd T, Ku KP, Kovacic BL, Larson CB, Chen F, Hodges AP, Tian Y, Olenzek EA, Zhao B et al (2008) VIOLIN: vaccine investigation and online information network. Nucleic Acids Res 36:D923–D928, Database issue

    Article  PubMed  CAS  Google Scholar 

  53. Hayes CN, Diez D, Joannin N, Kanehisa M, Wahlgren M, Wheelock CE, Goto S (2009) Tools for investigating mechanisms of antigenic variation: new extensions to varDB. Genome Inform 23(1):46–59

    Article  PubMed  Google Scholar 

  54. Diez D, Hayes N, Joannin N, Normark J, Kanehisa M, Wahlgren M, Wheelock CE, Goto S (2010) varDB: a database of antigenic variant sequences–current status and future prospects. Acta Trop 114(3):144–151

    Article  PubMed  CAS  Google Scholar 

  55. Allred DR, Barbet AF, Barry JD, Deitsch KW (2009) varDB: common ground for a shifting landscape. Trends Parasitol 25(6):249–252

    Article  PubMed  CAS  Google Scholar 

  56. Hayes CN, Diez D, Joannin N, Honda W, Kanehisa M, Wahlgren M, Wheelock CE, Goto S (2008) varDB: a pathogen-specific sequence database of protein families involved in antigenic variation. Bioinformatics 24(21):2564–2565

    Article  PubMed  CAS  Google Scholar 

  57. Tongchusak S, Chaiyaroj SC, Veeramani A, Koh JLY, Brusic V (2005) CandiVF—Candida albicans virulence factor database. Int J Pep Res Ther 11(4):271–277

    Article  CAS  Google Scholar 

  58. Yang J, Chen L, Sun L, Yu J, Jin Q (2008) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36:D539–D542, Database issue

    Article  PubMed  CAS  Google Scholar 

  59. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328, Database issue

    Article  PubMed  CAS  Google Scholar 

  60. Winnenburg R, Baldwin TK, Urban M, Rawlings C, Kohler J, Hammond-Kosack KE (2006) PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 34:D459–D464

    Article  PubMed  CAS  Google Scholar 

  61. Kamble S, Bharmal M (2009) Incremental direct expenditure of treating asthma in the United States. J Asthma 46(1):73–80

    Article  PubMed  Google Scholar 

  62. Ivanciuc O, Mathura V, Midoro-Horiuti T, Braun W, Goldblum RM, Schein CH (2003) Detecting potential IgE-reactive sites on food proteins using a sequence and structure database, SDAP-food. J Agric Food Chem 51(16):4830–4837

    Article  PubMed  CAS  Google Scholar 

  63. Ivanciuc O, Schein CH, Braun W (2003) SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 31(1):359–362

    Article  PubMed  CAS  Google Scholar 

  64. Nakamura R, Teshima R (2009) Major revision of the allergen database for food safety (ADFS) and validation of the motif-based allergenicity prediction tool. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 127:44–49

    PubMed  CAS  Google Scholar 

  65. Nakamura R, Teshima R, Takagi K, Sawada J (2005) Development of Allergen Database for Food Safety (ADFS): an integrated database to search allergens and predict allergenicity. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 123:32–36

    PubMed  CAS  Google Scholar 

  66. Mari A, Scala E (2006) Allergome: a unifying platform. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf AM 95:29–39, discussion 39–40

    Google Scholar 

  67. Chardin H, Peltre G (2005) Allergome: the characterization of allergens based on a 2D gel electrophoresis approach. Expert Rev Proteomics 2(5):757–765

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R. Flower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ansari, H.R., Flower, D.R., Raghava, G.P.S. (2013). On the Development of Vaccine Antigen Databases: Progress, Opportunity, and Challenge. In: Flower, D., Perrie, Y. (eds) Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. Immunomics Reviews:, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5070-2_7

Download citation

Publish with us

Policies and ethics