Immune Stimulating Complexes (ISCOMs) and Quil-A Containing Particulate Formulations as Vaccine Delivery Systems

Part of the Immunomics Reviews: book series (IMMUN, volume 5)


Immune stimulating complexes (ISCOMs) belong to the group of particulate vaccine delivery systems. These particles have received considerable attention in the field of vaccine delivery systems, especially for subunit vaccines. ISCOMs have a spherical, open and cage-like structure and a particle size of around 40nm. They contain an adjuvant (Quil A or QS 21) and an antigen incorporated into or associated with their colloidal structure, making ISCOMs particulate antigen delivery systems which allow co-delivery of antigen and adjuvant. In this chapter we initially describe the components, microstructures and preparation methods of ISCOMs followed by their mechanism of immune stimulation and their use as vaccines.


Critical Micelle Concentration Influenza Vaccine Malaria Vaccine Colloidal Structure Particulate Delivery System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akerblom L, Nara P, Dunlop N, Putney S, Morein B (1993) HIV experimental vaccines based on the iscom technology using envelope and GAG gene products. Biotechnol Ther 4(3–4):145–161PubMedGoogle Scholar
  2. 2.
    Andersson C, Sandberg L, Wernérus H, Johansson M, Lövgren-Bengtsson K, Ståhl S (2000) Improved systems for hydrophobic tagging of recombinant immunogens for efficient iscom incorporation. J Immunol Methods 238(1–2):181–193PubMedCrossRefGoogle Scholar
  3. 3.
    Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796PubMedCrossRefGoogle Scholar
  4. 4.
    Barr IG, Mitchell GF (1996) ISCOMs (immunostimulating complexes): the first decade. Immunol Cell Biol 74(1):8–25PubMedCrossRefGoogle Scholar
  5. 5.
    Barr IG, Sjölander A, Cox JC (1998) ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev 32(3):247–271PubMedCrossRefGoogle Scholar
  6. 6.
    Behboudi S, Morein B, Rönnberg B (1995) Isolation and quantification of Quillaja saponaria Molina saponins and lipids in iscom-matrix and iscoms. Vaccine 13(17):1690–1696PubMedCrossRefGoogle Scholar
  7. 7.
    Brando C, Ware LA, Freyberger H, Kathcart A, Barbosa A, Cayphas S, Demoitie M-A, Mettens P, Heppner DG, Lanar DE (2007) Murine immune responses to liver-stage antigen 1 protein FMP011, a malaria vaccine candidate, delivered with adjuvant AS01B or AS02A. Infect Immun 75(2):838–845PubMedCrossRefGoogle Scholar
  8. 8.
    Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM (2003) Liposomal delivery of antigen to human dendritic cells. Vaccine 21(9–10):883–890PubMedCrossRefGoogle Scholar
  9. 9.
    Copland MJ, Rades T, Davies NM (2000) Hydration of lipid films with an aqueous solution of Quil A: a simple method for the preparation of immune-stimulating complexes. Int J Pharm 196(2):135–139PubMedCrossRefGoogle Scholar
  10. 10.
    da Fonseca DPAJ, Frerichs J, Singh M, Snippe H, Verheul AFM (2000) Induction of antibody and T-cell responses by immunization with ISCOMS containing the 38-kilodalton protein of Mycobacterium tuberculosis. Vaccine 19(1):122–131PubMedCrossRefGoogle Scholar
  11. 11.
    Dalsgaard K (1974) Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Arch Gesamte Virusforsch 44(3):243–254PubMedCrossRefGoogle Scholar
  12. 12.
    Dasarai V, Smith C, Zhong J, Scott G, Rawlinson W, Khanna R (2011) Recombinant glycoprotein B vaccine formulation with TLR9 agonist and immune stimulating complex induces specific immunity against multiple strains of cytomegalovirus. J Gen Virol 92:1021–1031CrossRefGoogle Scholar
  13. 13.
    Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen Y-T, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc Natl Acad Sci U S A 101(29):10697–10702PubMedCrossRefGoogle Scholar
  14. 14.
    De Gregorio E, D’Oro U, Wack A (2009) Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol 21(3):339–345PubMedCrossRefGoogle Scholar
  15. 15.
    Demana P, Fehske C, White K, Rades T, Hook S (2004) Effect of incorporation of the adjuvant Quil A on structure and immune stimulatory capacity of liposomes. Immunol Cell Biol 82:547–554PubMedCrossRefGoogle Scholar
  16. 16.
    Demana PH, Berger B, Vosgerau U, Rades T, Davies NM (2004) A comparison of pseudo-ternary diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by lipid-film hydration and dialysis. J Pharm Pharmacol 56(5):573–580PubMedCrossRefGoogle Scholar
  17. 17.
    Demana PH, Davies NM, Hook S, Rades T (2005) Quil A-lipid powder formulations releasing ISCOMs and related colloidal structures upon hydration. J Control Release 103(1):45–59PubMedCrossRefGoogle Scholar
  18. 18.
    Demana PH, Davies NM, Vosgerau U, Rades T (2004) Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method. Int J Pharm 270(1–2):229–239PubMedCrossRefGoogle Scholar
  19. 19.
    Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021PubMedCrossRefGoogle Scholar
  20. 20.
    Duthie MS, Windish HP, Fox CB, Reed SG (2010) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239(1):178–196CrossRefGoogle Scholar
  21. 21.
    Ekström J, Hu K-F, Bengtsson KL, Morein B (1999) Iscom and iscom-matrix enhance by intranasal route the IgA responses to OVA and rCTB in local and remote mucosal secretions. Vaccine 17(20–21):2690–2701PubMedCrossRefGoogle Scholar
  22. 22.
    Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thipphawong J (1999) Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMs). Virology 259(2):256–261PubMedCrossRefGoogle Scholar
  23. 23.
    Evans TG, McElrath MJ, Matthews T, Montefiori D, Weinhold K, Wolff M, Keefer MC, Kallas EG, Corey L, Gorse GJ, Belshe R, Graham BS, Spearman PW, Schwartz D, Mulligan MJ, Goepfert P, Fast P, Berman P, Powell M, Francis D (2001) QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 19(15–16):2080–2091PubMedCrossRefGoogle Scholar
  24. 24.
    Furrie E, Smith RE, Turner MW, Strobel S, Mowat AM (2002) Induction of local innate immune responses and modulation of antigen uptake as mechanisms underlying the mucosal adjuvant properties of immune stimulating complexes (ISCOMS). Vaccine 20(17–18):2254–2262PubMedCrossRefGoogle Scholar
  25. 25.
    Glauert AM, Dingle JT, Lucy JA (1962) Action of saponin on biological cell membranes. Nature 196(4858):953–955CrossRefGoogle Scholar
  26. 26.
    Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S (2010) In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 41(2):360–368PubMedCrossRefGoogle Scholar
  27. 27.
    Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, Hook S (2010) In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. European Journal of Pharmaceutical Sciences 41(2):360–368PubMedCrossRefGoogle Scholar
  28. 28.
    Guo S, Kenne L, Lundgren LN, Rönnberg B, Sundquist BG (1998) Triterpenoid saponins from Quillaja saponaria. Phytochemistry 48(1):175–180PubMedCrossRefGoogle Scholar
  29. 29.
    Hawkes CA, McLaurin J (2008) Clinical immunotherapy trials in Alzheimer’s disease. Drug Discov Today 5(3):177–183Google Scholar
  30. 30.
    Higuchi R, Tokimitsu Y, Komori T (1988) An acylated triterpenoid saponin from Quillaja saponaria. Phytochemistry 27(4):1165–1168CrossRefGoogle Scholar
  31. 31.
    Hoglund S, Dalsgaard K, Lovgren K, Sundquist B, Osterhaus A, Morein B (1989) ISCOMs and immunostimulation with viral antigens. Sub-cellular biochemistry, 1st edn. Plenum Press, New YorkGoogle Scholar
  32. 32.
    Iosef C, Van Nguyen T, K-I J, Bengtsson K, Morein B, Kim Y, Chang K-O, Azevedo MSP, Yuan L, Nielsen P, Saif LJ (2002) Systemic and intestinal antibody secreting cell responses and protection in gnotobiotic pigs immunized orally with attenuated Wa human rotavirus and Wa 2/6-rotavirus-like-particles associated with immunostimulating complexes. Vaccine 20(13–14):1741–1753PubMedCrossRefGoogle Scholar
  33. 33.
    ISCONOVA A (2011) AbISCO® adjuvant user guide. Accessed 23 March 2011
  34. 34.
    Jacobs C, Duewell P, Heckelsmiller K, Wei J, Bauernfeind F, Ellermeier J, Kisser U, Bauer CA, Dauer M, Eigler A, Maraskovsky E, Endres S, Schnurr M (2010) An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer 128(4):897–907CrossRefGoogle Scholar
  35. 35.
    Johansson M, Lövgren-Bengtsson K (1999) Iscoms with different quillaja saponin components differ in their immunomodulating activities. Vaccine 17(22):2894–2900PubMedCrossRefGoogle Scholar
  36. 36.
    Johansson M, Ranlund K, Lovgren-Bengtsson K (2000) Impaired immunogenicity of immunostimulating complexes (iscoms) by administration in slow-release formulations. Microbes Infect 2(9):1003–1010PubMedCrossRefGoogle Scholar
  37. 37.
    Keefer M, Wolff M, Gorse G, Graham B, Corey L, Clements-Mann M, Verani-Ketter N, Erb S, Smith C, Belshe R, Wagner L, McElrath M, Schwartz D, Fast P (1997) Safety profile of phase I and II preventive HIV type 1 envelope vaccination: experience of the NIAID AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses 13(14):1163–1177PubMedCrossRefGoogle Scholar
  38. 38.
    Kensil C, Patel U, Lennick M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146(2):431–437PubMedGoogle Scholar
  39. 39.
    Kensil CR (1996) Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 13(1–2):1–55PubMedGoogle Scholar
  40. 40.
    Kersten GFA, Crommelin DJA (1995) Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1241(2):117–138PubMedCrossRefGoogle Scholar
  41. 41.
    Kersten GFA, Spiekstra A, Beuvery EC, Crommelin DJA (1991) On the structure of immune-stimulating saponin-lipid complexes (ISCOMs). Biochim Biophys Acta 1062(2):165–171PubMedCrossRefGoogle Scholar
  42. 42.
    Kodama S, Hirano T, Noda K, Umemoto S, Suzuki M (2011) Nasal immunization with plasmid DNA encoding P6 protein and immunostimulatory complexes elicits nontypeable Haemophilus influenzae-specific long-term mucosal immune responses in the nasopharynx. Vaccine 29(10):1881–1890PubMedCrossRefGoogle Scholar
  43. 43.
    Könnings S, Copland MJ, Davies NM, Rades T (2002) A method for the incorporation of ovalbumin into immune stimulating complexes prepared by the hydration method. Int J Pharm 241(2):385–389PubMedCrossRefGoogle Scholar
  44. 44.
    Kruit W, Suciu S, Dreno B, Chiarion-Sileni V, Mortier L, Robert C, Maio M, Brichard V, Lehmann F, Keilholz U (2008) Immunization with recombinant MAGE-A3 protein combined with adjuvant systems AS15 or AS02B in patients with unresectable and progressive metastatic cutaneous melanoma: A randomized open-label phase II study of the EORTC Melanoma Group. J Clin Oncol 26(suppl 15):A9065Google Scholar
  45. 45.
    Larsson M, Lövgren K, Morein B (1993) Immunopotentiation of synthetic oligopeptides by chemical conjugation to iscoms. J Immunol Methods 162(2):257–260PubMedCrossRefGoogle Scholar
  46. 46.
    Lendemans DG, Egert AM, Hook S, Rades T (2007) Cage-like complexes formed by DOTAP, Quil-A and cholesterol. Int J Pharm 332(1–2):192–195PubMedCrossRefGoogle Scholar
  47. 47.
    Lendemans DG, Egert AM, Myschik J, Hook S, Rades T (2006) On the dilution behaviour of immuno-stimulating complexes (ISCOMs). Pharmazie 61(8):689–695PubMedGoogle Scholar
  48. 48.
    Lendemans DG, Myschik J, Hook S, Rades T (2005) Cationic cage-like complexes formed by DC-cholesterol, Quil-A, and phospholipid. J Pharm Sci 94(8):1794–1807PubMedCrossRefGoogle Scholar
  49. 49.
    Lendemans DG, Myschik J, Hook S, Rades T (2005) Immuno-stimulating complexes prepared by ethanol injection. J Pharm Pharmacol 57(6):729–733PubMedCrossRefGoogle Scholar
  50. 50.
    Leroux-Roels I, Koutsoukos M, Clement F, Steyaert S, Janssens M, Bourguignon P, Cohen K, Altfeld M, VandepapeliËre P, Pedneault L, McNally L, Leroux-Roels G, Voss G (2010) Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three adjuvant systems. Vaccine 28(43):7016–7024PubMedCrossRefGoogle Scholar
  51. 51.
    Li H, Willingham SB, Ting JP-Y, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21PubMedGoogle Scholar
  52. 52.
    Liang M, Toth I, Davies NM (2008) A novel method for preparing immune stimulating complexes (ISCOMs) by hydration of freeze-dried lipid matrix. Eur J Pharm Biopharm 68(3):840–845PubMedGoogle Scholar
  53. 53.
    Lipford GB, Wagner H, Heeg K (1994) Vaccination with immunodominant peptides encapsulated in Quil A-containing liposomes induces peptide-specific primary CD8+ cytotoxic T cells. Vaccine 12(1):73–80PubMedCrossRefGoogle Scholar
  54. 54.
    Lövgren K, Lindmark J, Pipkorn R, Morein B (1987) Antigenic presentation of small molecules and peptides conjugated to a preformed iscom as carrier. J Immunol Methods 98(1):137–143PubMedCrossRefGoogle Scholar
  55. 55.
    Lövgren K, Morein B (1988) The requirement of lipids for the formation of immunostimulating complexes (ISCOMs). Biotechnol Appl Biochem 10(2):161–172PubMedGoogle Scholar
  56. 56.
    Madhun AS, Haaheim LR, Nilsen MV, Cox RJ (2009) Intramuscular matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 27(52):7367–7376PubMedCrossRefGoogle Scholar
  57. 57.
    Madsen H, Ifversen P, Madsen F, Brodin B, Hausser I, Nielsen H (2009) In vitro cutaneous application of ISCOMs on human skin enhances delivery of hydrophobic model compounds through the stratum corneum. AAPS J 11(4):728–739PubMedCrossRefGoogle Scholar
  58. 58.
    Madsen HB, Arboe-Andersen HM, Rozlosnik N, Madsen F, Ifversen P, Kasimova MR, Nielsen HM (2010) Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems. Biochim Biophys Acta 1798(9):1779–1789PubMedCrossRefGoogle Scholar
  59. 59.
    Maraskovsky E, Sjölander S, Drane DP, Schnurr M, Le TTT, Mateo L, Luft T, Masterman K-A, Tai T-Y, Chen Q, Green S, Sjolander A, Pearse MJ, Lemonnier FA, Chen W, Cebon J, Suhrbier A (2004) NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin Cancer Res 10(8):2879–2890PubMedCrossRefGoogle Scholar
  60. 60.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426PubMedCrossRefGoogle Scholar
  61. 61.
    Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22(3):411–416PubMedCrossRefGoogle Scholar
  62. 62.
    McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S (2008) In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine 26(35):4549–4556PubMedCrossRefGoogle Scholar
  63. 63.
    Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300PubMedCrossRefGoogle Scholar
  64. 64.
    Morein B, Bengtsson KL (1999) Immunomodulation by Iscoms, immune stimulating complexes. Methods 19(1):94–102PubMedCrossRefGoogle Scholar
  65. 65.
    Morein B, Ekström J, Lövgren K (1990) Increased immunogenicity of a non-amphipathic protein (BSA) after inclusion into iscoms. J Immunol Methods 128(2):177–181PubMedCrossRefGoogle Scholar
  66. 66.
    Morein B, Lovgren K, Ronnberg B, Sjolander A, Villacres-Eriksson M (1995) Immunostimulating complexes. Clinical potential in vaccine development. Clin Immunother 3(6):461–475CrossRefGoogle Scholar
  67. 67.
    Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308(5958):457–460PubMedCrossRefGoogle Scholar
  68. 68.
    Morgan D (2006) Immunotherapy for Alzheimer’s disease. J Intern Med 269(1):54–63CrossRefGoogle Scholar
  69. 69.
    Mowat A, Maloy K, Donachie AM (1993) Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens. Immunology 80(4):527–534PubMedGoogle Scholar
  70. 70.
    Myschik J, Eberhardt F, Rades T, Hook S (2008) Immunostimulatory biodegradable implants containing the adjuvant Quil-A. Part I: physicochemical characterisation. J Drug Target 16(3):213–223PubMedCrossRefGoogle Scholar
  71. 71.
    Myschik J, Lendemans DG, McBurney WT, Demana PH, Hook S, Rades T (2006) On the preparation, microscopic investigation and application of ISCOMs. Micron 37(8):724–734PubMedCrossRefGoogle Scholar
  72. 72.
    Myschik J, Mcburney WT, Hennessy T, Phipps-Green A, Rades T, Hook S (2008) Immunostimulatory biodegradable implants containing the adjuvant Quil-A. Part II: in vivo evaluation. J Drug Target 16(3):224–232PubMedCrossRefGoogle Scholar
  73. 73.
    Myschik J, Rades T, Hook S (2009) Advances in lipid-based subunit vaccine formulations. Curr Immunol Rev 5:42–48CrossRefGoogle Scholar
  74. 74.
    Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, Dimopoulos N, Tan B, Maraskovsky E, Miloradovic L, Hopkins W, Pan L, Venhaus R, Hoffman EW, Chen W, Cebon J (2009) Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin Cancer Res 15(6):2166–2173PubMedCrossRefGoogle Scholar
  75. 75.
    Ockenhouse CF, Angov E, Kester KE, Diggs C, Soisson L, Cummings JF, Stewart AV, Palmer DR, Mahajan B, Krzych U, Tornieporth N, Delchambre M, Vanhandenhove M, Ofori-Anyinam O, Cohen J, Lyon JA, Heppner DG (2006) Phase I safety and immunogenicity trial of FMP1/AS02A, a Plasmodium falciparum MSP-1 asexual blood stage vaccine. Vaccine 24(15):3009–3017PubMedCrossRefGoogle Scholar
  76. 76.
    Oliveira-Freitas E, Casas CP, Borja-Cabrera GP, Santos FN, Nico D, Souza LOP, Tinoco LW, da Silva BP, Palatnik M, Parente JP, Palatnik-de-Sousa CB (2006) Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis. Vaccine 24(18):3909–3920PubMedCrossRefGoogle Scholar
  77. 77.
    Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S, Lang T, Gould J, Dubois M-C, Jongert E, Vansadia P, Carter T, Njuguna P, Awuondo KO, Malabeja A, Abdul O, Gesase S, Mturi N, Drakeley CJ, Savarese B, Villafana T, Lapierre D, Ballou WR, Cohen J, Lemnge MM, Peshu N, Marsh K, Riley EM, von Seidlein L, Bejon P (2011) Efficacy of RTS, S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis 11(2):102–109PubMedCrossRefGoogle Scholar
  78. 78.
    Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Αβ42 immunization. Neurology 61(1):46–54PubMedCrossRefGoogle Scholar
  79. 79.
    Özel M, Hlund S, Gelderblom HR, Morein B (1989) Quaternary structure of the immunostimulating complex (Iscom). J Ultrastruct Mol Struct Res 102(3):240–248PubMedCrossRefGoogle Scholar
  80. 80.
    Pandey RS, Dixit VK (2009) Evaluation of ISCOM vaccines for mucosal immunization against hepatitis B. J Drug Target 18(4):282–291CrossRefGoogle Scholar
  81. 81.
    Pfizer Animal Health (2004) Next generation adjuvant system: Key to enhanced protection conferred by BVDV (Types 1 and 2) components of CattleMaster ®GOLD™. Pfizer Animal Health Technical Bulletin, New YorkGoogle Scholar
  82. 82.
    Pham HL, Shaw PN, Davies NM (2006) Preparation of immuno-stimulating complexes (ISCOMs) by ether injection. Int J Pharm 310(1–2):196–202PubMedCrossRefGoogle Scholar
  83. 83.
    Radosevic K, Rodriguez A, Mintardjo R, Tax D, Bengtsson KL, Thompson C, Zambon M, Weverling GJ, UytdeHaag F, Goudsmit J (2008) Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: Impact of distinct additional adjuvants. Vaccine 26(29–30):3640–3646PubMedCrossRefGoogle Scholar
  84. 84.
    Reid G (1992) Soluble proteins incorporate into ISCOMs after covalent attachment of fatty acid. Vaccine 10(9):597–602PubMedCrossRefGoogle Scholar
  85. 85.
    Rhodes J (1996) Covalent chemical events in immune induction: fundamental and therapeutic effects. Immunol Today 17(7):436–441PubMedCrossRefGoogle Scholar
  86. 86.
    Rimmelzwaan GF, Siebelink KHJ, Huisman RC, Moss B, Francis MJ, Osterhaus ADME (1994) Removal of the cleavage site of recombinant feline immunodeficiency virus envelope protein facilitates incorporation of the surface glycoprotein in immune-stimulating complexes. J Gen Virol 75(8):2097–2102PubMedCrossRefGoogle Scholar
  87. 87.
    Robson NC, Beacock-Sharp H, Donachie AM, Mowat AM (2003) The role of antigen-presenting cells and interleukin-12 in the priming of antigen-specific CD4+ T cells by immune stimulating complexes. Immunology 110:95–104PubMedCrossRefGoogle Scholar
  88. 88.
    Rohn TA, Bachmann MF (2010) Vaccines against non-communicable diseases. Curr Opin Immunol 22(3):391–396PubMedCrossRefGoogle Scholar
  89. 89.
    Rönnberg B, Fekadu M, Behboudi S, Kenne L, Morein B (1997) Effects of carbohydrate modification of Quillaja saponaria Molina QH-B fraction on adjuvant activity, cholesterol-binding capacity and toxicity. Vaccine 15(17–18):1820–1826PubMedCrossRefGoogle Scholar
  90. 90.
    Rönnberg B, Fekadu M, Morein B (1995) Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine 13(14):1375–1382PubMedCrossRefGoogle Scholar
  91. 91.
    Sambhara S, Kurichh A, Miranda R, Tumpey T, Rowe T, Renshaw M, Arpino R, Tamane A, Kandil A, James O, Underdown B, Klein M, Katz J, Burt D (2001) Heterosubtypic immunity against human influenza A viruses, including recently emerged avian H5 and H9 viruses, induced by FLU-ISCOM vaccine in mice requires both cytotoxic T-lymphocyte and macrophage function. Cell Immunol 211(2):143–153PubMedCrossRefGoogle Scholar
  92. 92.
    Sanders MT, Brown LE, Deliyannis G, Pearse MJ (2005) ISCOM™-based vaccines: the second decade. Immunol Cell Biol 83(2):119–128PubMedCrossRefGoogle Scholar
  93. 93.
    Schnurr M, Orban M, Robson NC, Shin A, Braley H, Airey D, Cebon J, Maraskovsky E, Endres S (2009) ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 182(3):1253–1259PubMedGoogle Scholar
  94. 94.
    Segal R, Shatkovsky P, Milo-Goldzweig I (1974) On the mechanism of saponin hemolysis—I: hydrolysis of the glycosidic bond. Biochem Pharmacol 23(5):973–981PubMedCrossRefGoogle Scholar
  95. 95.
    Sjölander A, Cox J, Barr I (1998) ISCOMs: an adjuvant with multiple functions. J Leukoc Biol 64(6):713–723PubMedGoogle Scholar
  96. 96.
    Sjölander A, Lovgren K, Stahl S, Aslund L, Hansson M, Nygren PA, Larsson M, Hagstedt M, Wahlin B, Berzins K, Uhlen M, Morein B, Perlmann P (1991) High antibody-responses in rabbits immunized with influenza-virus iscoms containing a repeated sequence of the plasmodium-falciparum antigen pf155/resa. Vaccine 9(6):443–450PubMedCrossRefGoogle Scholar
  97. 97.
    Sjölander A, van’t Land B, Bengtsson KL (1997) Iscoms containing purified Quillaja saponins upregulate both Th1-like and Th2-like immune responses. Cell Immunol 177(1):69–76PubMedCrossRefGoogle Scholar
  98. 98.
    Smith RE, Donachie AM, Grdic D, Lycke N, Mowat AM (1999) Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J Immunol 162(9):5536–5546PubMedGoogle Scholar
  99. 99.
    Soltysik S, Wu J-Y, Recchia J, Wheeler DA, Newman MJ, Coughlin RT, Kensil CR (1995) Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13(15):1403–1410PubMedCrossRefGoogle Scholar
  100. 100.
    Sundling C, O’Dell S, Douagi I, Forsell MN, Morner A, Lore K, Mascola JR, Wyatt RT, Karlsson Hedestam GB (2010) Immunization with wild-type or CD4-binding-defective HIV-1 Env trimers reduces viremia equivalently following heterologous challenge with simian-human immunodeficiency virus. J Virol 84(18):9086–9095PubMedCrossRefGoogle Scholar
  101. 101.
    Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215PubMedCrossRefGoogle Scholar
  102. 102.
    Tyagi P, Mirakhur B (2009) MAGRIT: the largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin Lung Cancer 10(5):371–374PubMedCrossRefGoogle Scholar
  103. 103.
    Ubhi K, Masliah E (2011) Recent advances in the development of immunotherapies for tauopathies. Exp Neurol 230(2):157–161. doi: 10.1016/j.expneurol.2010.10.007 PubMedCrossRefGoogle Scholar
  104. 104.
    Vansteenkiste J, Zielinski M, Linder A, Dahabre J, Esteban E, Malinowski W, Jassem J, Passlick B, Lehmann F, Brichard V (2007) Final results of a multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). J Clin Oncol 25(18S):7554Google Scholar
  105. 105.
    Villacres-Eriksson M, Bergström-Mollaoglu M, Kåberg H, Lövgren K, Morein B (1993) The induction of cell-associated and secreted IL-1 by iscoms, matrix or micelles in murine splenic cells. Clin Exp Immunol 93(1):120–125PubMedCrossRefGoogle Scholar
  106. 106.
    Waite DC, Jacobson EW, Ennis FA, Edelman R, White B, Kammer R, Anderson C, Kensil CR (2001) Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine 19(28–29):3957–3967PubMedCrossRefGoogle Scholar
  107. 107.
    White K, Rades T, Furneaux R, Kearns P, Toth I, Hook S (2006) Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharm Res 23(7):1473–1481PubMedCrossRefGoogle Scholar
  108. 108.
    Williams A, Flavell RA, Eisenbarth SC (2010) The role of NOD-like receptors in shaping adaptive immunity. Curr Opin Immunol 22(1):34–40PubMedCrossRefGoogle Scholar
  109. 109.
    Yu H, Jiang X, Shen C, Karunakaran KP, Jiang J, Rosin NL, Brunham RC (2010) Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-γ)/tumor necrosis factor alpha and IFN-γ/interleukin-17 double-positive CD4+ T cells. Infect Immun 78(5):2272–2282PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.New Zealand’s National School of PharmacyUniversity of OtagoDunedinNew Zealand

Personalised recommendations