Skip to main content

The Dynamics and Circulation of Venus Atmosphere

  • Chapter
  • First Online:
Book cover Towards Understanding the Climate of Venus

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 11))

Abstract

In this chapter we introduce a number of basic dynamical ideas and concepts that are useful in understanding the large-scale circulation of Venus’s atmosphere. Some of these are of interest from an historical viewpoint, having influenced thinking on this subject at an earlier time. But most are still very relevant for interpreting modern observations, measurements and for formulating and interpreting models. We begin by considering basic conservation principles that provide key constraints on the circulation and go on to investigate the main dynamical balances prevalent in the atmosphere. The chapter goes on to discuss the main eddy processes that are likely to play a significant role in maintaining Venus’s atmospheric super-rotation, including planetary waves, gravity waves and thermal tides, their likely origins and how they interact with the zonal flow. The chapter concludes with a brief discussion of how the atmosphere interacts with the underlying surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.C.B. Aguiar, P.L. Read, R.D. Wordsworth, T. Salter, Y.H. Yamazaki, A laboratory model of Saturn’s North Polar hexagon. Icarus 206, 755–763 (2010)

    Article  ADS  Google Scholar 

  • D.G. Andrews, M.E. McIntyre, Generalized eliassen-palm and charney-drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35, 175–185 (1978)

    Article  ADS  Google Scholar 

  • D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academy, Orlando, 1987)

    Google Scholar 

  • N.L. Baker, C.B. Leovy, Zonal winds near Venus cloud top level – a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202–220 (1987)

    Article  ADS  Google Scholar 

  • R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of venus. part I: No wind shear. J. Atmos. Sci. 57, 184–199 (2000a)

    Google Scholar 

  • R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of venus. part II: Mean wind shear and wave-mean flow interaction. J. Atmos. Sci. 57, 200–215 (2000b)

    Google Scholar 

  • S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips, University of Arizona Press, AZ, Tucson (1997), pp. 259–291

    Google Scholar 

  • S. Chapman, S. Lindzen, Atmospheric Tides (Reidel, Dordrecht, 1970)

    Google Scholar 

  • C.C. Counselman III, S.A. Gourevitch, R.W. King and G.B. Loriot, Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry, J. Geophys. Res, 85, 8026–8030 (1980)

    Article  ADS  Google Scholar 

  • R.A. Craig, A solution of the nonlinear vorticity equation for atmospheric motion. J. Meteor. 2, 175–178 (1945)

    Article  MathSciNet  Google Scholar 

  • A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)

    Article  ADS  Google Scholar 

  • P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, UK (1981)

    MATH  Google Scholar 

  • L.S. Elson, Wave instability in the polar-region of Venus. J. Atmos. Sci. 39, 2356–2362 (1982)

    Article  ADS  Google Scholar 

  • S.B. Fels, R.S. Lindzen, The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, p. 149–191 (1974)

    Article  ADS  Google Scholar 

  • W.G. Fruh, P.L. Read, Experiments on a barotropic rotating shear layer. part 1. instability and steady vortices. J. Fluid. Mech. 383, 143–173 (1999)

    Google Scholar 

  • B. Galperin, S. Sukoriansky, P.S. Anderson, On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 8, 65–69 (2007)

    Article  ADS  Google Scholar 

  • J.R. Garratt, The atmospheric boundary layer – review. Earth-Science Reviews 37, 89–134 (1994)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J  Atmos. Sci. 32, 1038–1044 (1975). doi:10.1175/1520-0469(1975)032

    Article  ADS  Google Scholar 

  • P.J. Gierasch, Waves in the atmosphere of Venus. Nature 328, 510–512 (1987)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, P.H. Stone, A mechanism for Jupiter’s equatorial acceleration. J. Atmos. Sci. 25, 1169–1170 (1968)

    Article  ADS  Google Scholar 

  • A.E. Gill, Atmosphere-Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  • D. Grassi, A. Migliorini, L. Montabone, S. Lebonnois, A. Cardesin-Moinelo, G. Piccioni, P. Drossart, L.V. Zasova, Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J. Geophys. Res.-Planets 115, E09007 (2010)

    Article  ADS  Google Scholar 

  • B. Haurwitz, The motion of atmospheric disturbances on the spherical Earth. J. Mar. Res. 3, 254–267 (1940)

    Google Scholar 

  • I.M. Held, A.Y. Hou, Non-linear axially-symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Hide, Dynamics of the atmospheres of the major planets, with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci. 26, 841–853 (1969)

    Article  ADS  Google Scholar 

  • R. Hide, Equatorial jets in planetary atmospheres. Nature 225, 254–255 (1970)

    Article  ADS  Google Scholar 

  • D.P. Hinson, J.M. Jenkins, Magellan radio occultation measurements of atmospheric waves on Venus. Icarus 114, 310–327 (1995)

    Article  ADS  Google Scholar 

  • J.R. Holton, Introduction to Dynamic Meteorology, 4th edn. (Academic, New York, 2004)

    Google Scholar 

  • A.Y. Hou, Axisymmetric circulations forced by heat and momentum sources – a simple-model applicable to the Venus atmosphere. J. Atmos. Sci. 41, 3437–3455 (1984)

    Article  ADS  Google Scholar 

  • A.Y. Hou, B.F. Farrell, Superrotation induced by critical-level absorption of gravity-waves on Venus – an assessment. J. Atmos. Sci. 44, 1049–1061 (1987)

    Article  ADS  Google Scholar 

  • A.Y. Hou, R.M. Goody, Diagnostic requirements for the superrotation on Venus. J. Atmos. Sci. 42, 413–432 (1985)

    Article  ADS  Google Scholar 

  • L.N. Howard, P.G. Drazin, On instability of parellel flow of inviscid fluid in rotating system with variable coriolis parameter. J. Math. Phys. 43, 83–99 (1964)

    MathSciNet  Google Scholar 

  • S. Iga, Y. Matsuda, Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci. 62, 2514–2527 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res.-Planets 115, 6006 (2010). doi:10.1029/2009JE003458

    Article  Google Scholar 

  • C.B. Leovy, Rotation of the upper atmosphere of Venus.. J. Atmos. Sci. 30, 1218–1220 (1973). doi:10.1175/1520-0469(1973)030

    Article  ADS  Google Scholar 

  • S.S. Leroy, A.P. Ingersoll, Convective generation of gravity-waves in Venus’s atmosphere – gravity-wave spectrum and momentum transport. J. Atmos. Sci. 52, 3717–3737 (1995)

    Article  ADS  Google Scholar 

  • S.S. Limaye, Venus atmospheric circulation: Known and unknown. J. Geophys. Res. 112, E04S09 (2007). doi:10.1029/2006JE002814

    Google Scholar 

  • S.S. Limaye, J.P. Kossin, C. Rozoff, G. Piccioni, D.V. Titov, W.J. Markiewicz, Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04204 (2009). doi:10.1029/2008GL036093

    Article  Google Scholar 

  • R.S. Lindzen, Instability of plane parallel shear-flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126, 103–121 (1988)

    Article  ADS  Google Scholar 

  • M.S. Longuet-Higgins, Eigenfunctions of laplaces tidal equations over a sphere. Phil. Trans. R. Soc. A 262, 511–607 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • T. Matsuno, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44, 25–43 (1966)

    Google Scholar 

  • M.E. McIntyre, The stratospheric polar vortex and sub-vortex – fluid-dynamics and midlatitude ozone loss. Phil. Trans. R. Soc. A 352, 227–240 (1995)

    Article  ADS  Google Scholar 

  • J.M. Mendonca, P.L. Read, C.F. Wilson, S.R. Lewis, Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations. Icarus 217, 629–639 (2012). doi:10.1016/j.icarus.2011.07.010

    Article  ADS  Google Scholar 

  • D.V. Michelangeli, R.W. Zurek, L.S. Elson, Barotropic instability of midlatitude zonal jets on Mars, Earth And Venus. J. Atmos. Sci. 44, 2031–2041 (1987)

    Article  ADS  Google Scholar 

  • J.L. Mitchell, G.K. Vallis, The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. 115, E12008 (2010). doi:10.1029/2010JE003587

    Article  ADS  Google Scholar 

  • S.M. Neamtan, The motion of harmonic waves in the atmosphere. J. Meteor. 3, 53–56 (1946)

    Article  MathSciNet  Google Scholar 

  • H. Niino, N. Misawa, An experimental and theoretical-study of barotropic instability. J. Atmos. Sci. 41, 1992–2011 (1984)

    Article  ADS  Google Scholar 

  • J. Peralta, R. Hueso, A. Sanchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res.-Planets 113, E00B18 (2008)

    Google Scholar 

  • R.A. Plumb, Angular-momentum advection by axisymmetric motions. Quart. J. R. Meteor. Soc. 103, 479–485 (1977)

    Article  ADS  Google Scholar 

  • J.B. Pollack, R. Young, Calculations of radiative and dynamical state of Venus atmosphere. J. Atmos. Sci. 32, 1025–1037 (1975)

    Article  ADS  Google Scholar 

  • P. Read, Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Quater. J. R. Met. Soc. 112, 253–272 (1986)

    Google Scholar 

  • C.G. Rossby, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. J. Mar. Res. 2, 38–55 (1939)

    Google Scholar 

  • W.B. Rossow, G.P. Williams, Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979). doi:10.1175/1520-0469(1979)036

    Article  ADS  Google Scholar 

  • E.K. Schneider, Axially-symmetric steady-state models of basic state for instability and climate studies. 2. Nonlinear calculations. J. Atmos. Sci. 34, 280–296 (1977)

    Google Scholar 

  • P.J. Schnider, P.J. Gierasch, S.S. Leroy, M.D. Smith, Waves, advection, and cloud patterns on venus. J. Atmos. Sci. 47, 2037–2052 (1990)

    Article  ADS  Google Scholar 

  • J.T. Schofield, F.W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Quart. J. R. Meteor. Soc. 109, 57–80 (1983)

    Article  ADS  Google Scholar 

  • G. Schubert, R.L. Walterscheid, Propagation of small-scale acoustic gravity-waves in the Venus atmosphere. J. Atmos. Sci. 41, 1202–1213 (1984)

    Article  ADS  Google Scholar 

  • J. Sommeria, S.D. Meyers, H.L. Swinney, Experiments on vortices and Rossby waves in eastward and westward jets, in Nonlinear Topics in Ocean Physics, ed. by A.R. Osborne (North-Holland, Amsterdam, 1991)

    Google Scholar 

  • V.P. Starr, The Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968)

    Google Scholar 

  • P.D. Thompson, The propagation of permanent-type waves in horizontal flow. J. Meteor. 5, 166–168 (1948)

    Article  Google Scholar 

  • G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • I.C. Walton, Viscous nonlinear symmetric baroclinic instability of a zonal shear-flow. J. Fluid Mech. 68, 757–768 (1975)

    Article  ADS  MATH  Google Scholar 

  • G.P. Williams, Barotropic instability and equatorial superrotation. J. Atmos. Sci. 60, 2136–2152 (2003)

    Article  ADS  Google Scholar 

  • M. Yamamoto, Gravity waves and convection cells resulting from feedback heating of Venus’ lower clouds. J. Meteorol. Soc. Japan 81, 885–892 (2003)

    Article  Google Scholar 

  • R.E. Young, H. Houben, L. Pfister, Baroclinic instability in the Venus atmosphere. J. Atmos. Sci. 41, 2310–2333 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Read, P.L. (2013). The Dynamics and Circulation of Venus Atmosphere. In: Bengtsson, L., Bonnet, RM., Grinspoon, D., Koumoutsaris, S., Lebonnois, S., Titov, D. (eds) Towards Understanding the Climate of Venus. ISSI Scientific Report Series, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5064-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5064-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5063-4

  • Online ISBN: 978-1-4614-5064-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics