Biologic Therapies

  • Wojciech Blonski
  • Faten Aberra
  • Gary R. Lichtenstein


This chapter will review the use of biologic therapies other than infliximab, namely adalimumab, certolizumab pegol (CDP871), CDP571, golimumab, etanercept, onercept, anti-adhesion molecules (natalizumab, vedolizumab, AJM 300, alicaforsen ISIS 2302, anti-interleukin 12/23, briakinumab, ustekinumab, apilimod mesylate), anti-interleukin-2 receptor antibodies (daclizumab, basiliximab) and other miscellaneous biotechnology agents (sargramostim, filgrastim, interleukin 10, fontolizumab, visilizumab, RDP58, abatacept, antagonist to chemokine receptor 9, golimumab) for the treatment of Crohn disease and ulcerative colitis, with an emphasis on use in pediatric patients. Included in the review will be information on the mechanisms of action for the various agents, efficacy, and toxicity. When appropriate, data from clinical trials of these agents in children with dermatologic and rheumatologic disease will be included in order to give the reader the maximum information currently available on the use of these agents in children.


Ulcerative Colitis Progressive Multifocal Leukoencephalopathy Clinical Remission Crohn Disease Injection Site Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P, et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21:251–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Shen C, Van Assche G, Rutgeerts P, Ceuppens JL. Caspase activation and apoptosis induction by adalimumab: demonstration in vitro and in vivo in a chimeric mouse model. Inflamm Bowel Dis. 2006;12:22–8.PubMedCrossRefGoogle Scholar
  3. 3.
    den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Van Riel P, Sander O, et al. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol. 2002;29:2288–98.Google Scholar
  4. 4.
    van de Putte LB, Rau R, Breedveld FC, Kalden JR, Malaise MG, van Riel PL, et al. Efficacy and safety of the fully human anti-tumour necrosis factor alpha monoclonal antibody adalimumab (D2E7) in DMARD refractory patients with rheumatoid arthritis: a 12 week, phase II study. Ann Rheum Dis. 2003;62:1168–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003;48:35–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25:1700–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D, et al. Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J Rheumatol. 2003;30:2563–71.PubMedGoogle Scholar
  8. 8.
    van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis. 2004;63:508–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 2004;50: 1400–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Rau R, Simianer S, van Riel PL, van de Putte LB, Kruger K, Schattenkirchner M, et al. Rapid alleviation of signs and symptoms of rheumatoid arthritis with intravenous or subcutaneous administration of adalimumab in combination with methotrexate. Scand J Rheumatol. 2004;33:145–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Mease PJ, Gladman DD, Ritchlin CT, Ruderman EM, Steinfeld SD, Choy EH, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52:3279–89.PubMedCrossRefGoogle Scholar
  12. 12.
    van der Heijde D, Kivitz A, Schiff MH, Sieper J, Dijkmans BA, Braun J, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2006;54:2136–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC I trial. Gastroenterology. 2006;130:323–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh DG, et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56:1232–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132:56–65.CrossRefGoogle Scholar
  16. 16.
    Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Colombel JF, Panaccione R, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Ann Intern Med. 2007;146:829–38.PubMedGoogle Scholar
  17. 17.
    Panaccione R, Hanauer SB, Fedorak R, Rutgeerts P, Sandborn WJ, Pollack P. Concomitant immunosuppressive and adalimumab therapy in Crohn’s disease: 1-year results of the Classic II study. Gastroenterology. 2006;130 Suppl 2:A-479.Google Scholar
  18. 18.
    Hanauer SB, D’Haens GR, Colombel JF, Sandborn WJ, Kent JD, Pollack PF. Sustained clinical remission in patients with moderate to severe Crohn’s disease with adalimumab, regardless of anti-TNF history or concomitant immunosuppressant therapy. Am J Gastroenterol. 2006;101:S457. Abstract 1173.Google Scholar
  19. 19.
    Schwartz D, Rutgeerts P, Colombel JF, Sandborn WJ, Hanauer SB, Kent JD, et al. Induction, maintenance, and sustainability of the healing of draining fistulas in patients with Crohn’s disease treated with adalimumab: results of the CHARM study. Am J Gastroenterol. 2006;101:S458–459. Abstract 1177.Google Scholar
  20. 20.
    Hanauer SB, Kamm MA, Colombel JF, Sandborn WJ, Rutgeerts P, Kent JD, et al. Sustained steroid-free clinical remission in patients with moderate to severe Crohn’s disease treated with adalimumab. Am J Gastroenterol. 2006;101:S460. Abstract 1181.CrossRefGoogle Scholar
  21. 21.
    Prescribing information for Humira (adalimumab). 2011. Abbott Laboratories. North Chicago, IL 60064.Google Scholar
  22. 22.
    Reinisch W, Sandborn WJ, Hommes DW, D’Haens G, Hanauer S, Schreiber S, et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut. 2011;60:780–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Sandborn WJ, van Assche G, Reinisch W, Colombel JF, D’Haens G, Wolf DC, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142:257–65. e1-3.PubMedCrossRefGoogle Scholar
  24. 24.
    Hyams JS, Griffiths AM, Markowitz J, Baldassano R, Faubion WA, Colletti RB, et al. Induction and maintenance adalimumab for moderate to severe Crohn’s disease in children: a randomized double-blind trial. Gastroenterology. 2011;140:S-90.Google Scholar
  25. 25.
    Vesga L, Terdiman JP, Mahadevan U. Adalimumab use in pregnancy. Gut. 2006;54:890.CrossRefGoogle Scholar
  26. 26.
    Sanchez Munoz D, Hoyas Pablos E, Ramirez Martin Del Campo M, Nunez Hospital D, Guerrero Jimenez P. Gestacion a termino en paciente con enfermedad de Crohn en tratamiento con adalimumab. Gastroenterol Hepatol. 2005;28:435.PubMedCrossRefGoogle Scholar
  27. 27.
    Mishkin DS, Van Deinse W, Becker JM, Farraye FA. Successful use of adalimumab (Humira) for Crohn’s disease in pregnancy. Inflamm Bowel Dis. 2006;12:827–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Coburn LA, Wise PE, Schwartz DA. The successful use of adalimumab to treat active Crohn’s disease of an ileoanal pouch during pregnancy. Dig Dis Sci. 2006;51:2045–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Schnitzler F, Fidder H, Ferrante M, Ballet V, Noman M, Van Assche G, et al. Outcome of pregnancy in women with inflammatory bowel disease treated with antitumor necrosis factor therapy. Inflamm Bowel Dis. 2011;17:1846–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Burmester GR, Mease P, Dijkmans BA, Gordon K, Lovell D, Panaccione R, et al. Adalimumab safety and mortality rates from global clinical trials of six immune-mediated inflammatory diseases. Ann Rheum Dis. 2009;68:1863–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295:2275–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Schiff MH, Burmester GR, Kent JD, Pangan AL, Kupper H, Fitzpatrick SB, et al. Safety analyses of adalimumab (HUMIRA) in global clinical trials and US postmarketing surveillance of patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65: 889–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Nesbitt AM, Henry AJ. High affinity and potency of the pegylated FAB’ fragment CDP870—a direct comparison with other anti-TNF agents. Am J Gastroenterol. 2004;99:S253.Google Scholar
  34. 34.
    Fossati G, Nesbitt A. In vitro complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by the anti-TNF agents adalimumab, etanercept, infliximab, and certolizumab pegol (CDP870). Am J Gastroenterol. 2005;100(Supplement):S299.Google Scholar
  35. 35.
    Fossati G, Nesbitt A. Effect of the anti-TNF agents, adalimumab, etanercept, infliximab, and certolizumab PEGOL (CDP870) on the induction of apoptosis in activated peripheral blood lymphocytes and monocytes. Am J Gastroenterol. 2005;100 (Supplement):S298–9.Google Scholar
  36. 36.
    Schreiber S, Rutgeerts P, Fedorak RN, Khaliq-Kareemi M, Kamm MA, Boivin M, et al. for the CCsDSG. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Winter TA, Wright J, Ghosh S, Jahnsen J, Innes A, Round P. Intravenous CDP870, a PEGylated Fab’ fragment of a humanized antitumour necrosis factor antibody, in patients with moderate-to-severe Crohn’s disease: an exploratory study. Aliment Pharmacol Ther. 2004;20:1337–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, McColm JA, et al. Certolizumab pegol administered subcutaneously is effective and well tolerated in patients with active Crohn’s disease: results from a 26-week, placebo-controlled Phase III study (PRECiSE 1). Gastroenterology. 2006;130:A-107. Abstract 743.Google Scholar
  39. 39.
    Schreiber S, Khaliq-Kareemi M, Lawrance I, Hanauer S, McColm J, Bloomfield R, et al. Certolizumab pegol, a humanised anti-TNF pegylated FAb’ fragment, is safe and effective in the maintenance of response and remission following induction in active Crohn’s disease: a phase III study (Precise). Gut. 2005;54:A82. Suppl VII.CrossRefGoogle Scholar
  40. 40.
    Sandborn WJ, Schreiber S, Feagan BG, Rutgeerts P, Younes ZH, Bloomfield R, et al. Certolizumab pegol for active Crohn’s disease: a placebo-controlled, randomized trial. Clin Gastroenterol Hepatol. 2011;9:670–8. e3.PubMedCrossRefGoogle Scholar
  41. 41.
    Sandborn WJ, Schreiber S, Hanauer SB, Colombel JF, Bloomfield R, Lichtenstein GR. Reinduction with certolizumab pegol in patients with relapsed Crohn’s disease: results from the PRECiSE 4 Study. Clin Gastroenterol Hepatol. 2010;8:696–702. e1.PubMedCrossRefGoogle Scholar
  42. 42. Accessed April 2012.Google Scholar
  43. 43.
    Schreiber S, Feagan B, Hanauer SB, Rutgeerts P, McColm JA, Sandborn WJ. Safety and tolerability of subcutaneous (sc) certolizumab pegol in active Crohn’s disease (CD): results from two Phase III studies (PRECiSE program). Gastroenterology. 2006;130:A-479. Abstract T1126.Google Scholar
  44. 44.
    Choy EH, Hazleman B, Smith M, Moss K, Lisi L, Scott DG, et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology. 2002;41:1133–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Stack WA, Mann SD, Roy AJ, Heath P, Sopwith M, Freeman J, et al. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease. Lancet. 1997;349: 521–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Sandborn WJ, Feagan BG, Hanauer SB, Present DH, Sutherland LR, Kamm MA, et al. An engineered human antibody to TNF (CDP571) for active Crohn’s disease: a randomized double-blind placebo-controlled trial. Gastroenterology. 2001;120:1330–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Sandborn WJ, Feagan BG, Radford-Smith G, Kovacs A, Enns R, Innes A, et al. CDP571, a humanised monoclonal antibody to tumour necrosis factor alpha, for moderate to severe Crohn’s disease: a randomised, double-blind, placebo-controlled trial. Gut. 2004;53:1485–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Feagan BG, Sandborn WJ, Baker JP, Cominelli F, Sutherland LR, Elson CO, et al. A randomized, double-blind, placebo-controlled trial of CDP571, a humanized monoclonal antibody to tumour necrosis factor-alpha, in patients with corticosteroid-dependent Crohn’s disease. Aliment Pharmacol Ther. 2005;21:373–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Feagan BG, Sandborn WJ, Lichtenstein G, Radford-Smith G, Patel J, Innes A. CDP517, a humanized monoclonal antibody to tumor necrosis factor-a, for steroid-dependent Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther. 2006;23:617–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Mamula P, Cohen SA, Ferry GD, Kirschner BS, Winter HS, Innes A, et al. Pediatric Inflammatory Bowel Disease C. CDP571, a humanized anti-tumor necrosis factor-alpha monoclonal antibody in pediatric Crohn’s disease. Inflamm Bowel Dis. 2004;10: 723–30.PubMedCrossRefGoogle Scholar
  51. 51.
    van den Brande JMH, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, et al. Infliximab but not etanercept induces apopotosis in lamina propria T-lymphocytes from patients with Crohn’s diseease. Gastroenterology. 2003;124:1774–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A, et al. Etanercept as monotherapy in patients with psoriasis. [see comment]. N Engl J Med. 2003;349:2014–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Gottlieb AB, Matheson RT, Lowe N, Krueger GG, Kang S, Goffe BS, et al. A randomized trial of etanercept as monotherapy for psoriasis. Arch Dermatol. 2003;139:1627–32. discussion 1632.PubMedCrossRefGoogle Scholar
  54. 54.
    Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CE, Nakanishi AM, et al. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol. 2005;152:1304–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial.[see comment]. Lancet. 2006;367:29–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, Burge DJ. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial.[see comment]. Lancet. 2000;356:385–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Mease PJ, Kivitz AJ, Burch FX, Siegel EL, Cohen SB, Ory P, et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 2004;50: 2264–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, et al. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann Intern Med. 1999;130:478–86.PubMedGoogle Scholar
  59. 59.
    Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med. 2000;343:1586–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Gorman JD, Sack KE, Davis Jr JC. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha. N Engl J Med. 2002;346:1349–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Brandt J, Khariouzov A, Listing J, Haibel H, Sorensen H, Grassnickel L, et al. Six-month results of a double-blind, placebo-controlled trial of etanercept treatment in patients with active ankylosing spondylitis.[see comment]. Arthritis Rheum. 2003;48:1667–75.PubMedCrossRefGoogle Scholar
  62. 62.
    Davis Jr JC, Van Der Heijde D, Braun J, Dougados M, Cush J, Clegg DO, et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum. 2003;48:3230–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Calin A, Dijkmans BA, Emery P, Hakala M, Kalden J, Leirisalo-Repo M, et al. Outcomes of a multicentre randomised clinical trial of etanercept to treat ankylosing spondylitis. Ann Rheum Dis. 2004;63:1594–600.PubMedCrossRefGoogle Scholar
  64. 64.
    van der Heijde D, Da Silva JC, Dougados M, Geher P, van der Horst-Bruinsma I, Juanola X, et al. Etanercept Study I. Etanercept 50 mg once weekly is as effective as 25 mg twice weekly in patients with ankylosing spondylitis. Ann Rheum Dis. 2006;65:1572–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group.[see comment]. N Engl J Med. 2000;342:763–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, et al. Etanercept for active Crohn’s disease: a randomized, ­double-blind, placebo-controlled trial. Gastroenterology. 2001; 121:1088–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Rutgeerts P, Lemmens L, Van Assche G, Noman M, Borghini-Fuhrer I, Goedkoop R. Treatment of active Crohn’s disease with onercept (recombinant human soluble p55 tumour necrosis factor receptor): results of a randomized, open-label, pilot study. Aliment Pharmacol Ther. 2003;17:185–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Rutgeerts P, Sandborn WJ, Fedorak RN, Rachmilewitz D, Tarabar D, Gibson P, et al. Onercept (recombinant human p55 tumor necrosis factor receptor) for moderate-to-severe Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol. 2006;4:888–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, et al. International Natalizumab Multiple Sclerosis Trial G. A controlled trial of natalizumab for relapsing multiple sclerosis.[see comment]. N Engl J Med. 2003;348:15–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis.[see comment]. N Engl J Med. 2006;354:899–910.PubMedCrossRefGoogle Scholar
  71. 71.
    Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis.[see comment]. N Engl J Med. 2006;354:911–23.PubMedCrossRefGoogle Scholar
  72. 72.
    Gordon FH, Lai CW, Hamilton MI, Allison MC, Srivastava ED, Fouweather MG, et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology. 2001;121:268–74.PubMedCrossRefGoogle Scholar
  73. 73.
    Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348:24–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Sandborn W, Colombel J, Enns R, Feagan B, Hanauer S, Lawrance I, et al. Maintenance therapy with natalizumab does not require use of concomitant iImmunosuppressants for sustained efficacy in patients with active Crohn’s disease: results from the ENACT-2 study. Gastroenterology. 2006;130:A-482. Abstract 1137.Google Scholar
  76. 76.
    Panaccione R, Colombel J, Enns R, Feagan B, Hanauer S, Lawrance I, et al. Natalizumab maintains remission in patients with moderately to severely active Crohn’s disease for up to 2-years: results from an open-label extension study. Gastroenterology. 2006;130:A111. Abstract 768.Google Scholar
  77. 77.
    Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Sands BE, Kozarek R, Spainhour J, Barish CF, Becker S, Goldberg L, et al. Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission whil receiving infliximab. Inflammatory Bowel Disease. 2007;13:2–11.CrossRefGoogle Scholar
  79. 79.
    Gordon FH, Hamilton MI, Donoghue S, Greenlees C, Palmer T, Rowley-Jones D, et al. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther. 2002;16:699–705.PubMedCrossRefGoogle Scholar
  80. 80.
    Hyams JS, Wilson DC, Thomas A, Heuschkel R, Mitton S, Mitchell B, et al. Natalizumab therapy for moderate to severe Crohn disease in adolescents. J Pediatr Gastroenterol Nutr. 2007;44:185–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Prescribing information for Tysabri (natalizumab). 2007.Google Scholar
  82. 82.
    Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis.[see comment]. N Engl J Med. 2005;353:369–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab.[see comment]. N Engl J Med. 2005;353:375–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease.[see comment]. N Engl J Med. 2005;353:362–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Yousry TA, Major EO, Rysckewitsch C, Fahle G, Fischer S, Hou J, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephaolopathy. N Engl J Med. 2006;354:924–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol. 2008;6:1370–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Feagan B, McDonald J, Greenberg G, Wild G, Pare P, Fedorak R, et al. An ascending dose trial of humanized A4B7 antibody in ulcerative colitis (UC). Gastroenterology. 2000;118:A874.CrossRefGoogle Scholar
  88. 88.
    Feagan BG, Greenberg GR, Wild G, Fedorak R, Pare P, McDonald JWD, et al. Treatment of ulcerative colitis with a humanized antibody to the a4b7 integrin. N Engl J Med. 2005;352:2499–507.PubMedCrossRefGoogle Scholar
  89. 89.
    Behm BW, Bickston SJ. Humanized antibody to the alpha4beta7 integrin for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2009;1:CD007571.Google Scholar
  90. 90.
    Takazoe M, Watanabe M, Kawaguchi T, Matsumoto T, Oshitani N, Hiwatashi N, et al. Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease—a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2009;136:A-181.CrossRefGoogle Scholar
  91. 91.
    Shanahan Jr WR. ISIS 2302, an antisense inhibitor of intercellular adhesion molecule 1. Expert Opin Investig Drugs. 1999;8:1417–29.PubMedCrossRefGoogle Scholar
  92. 92.
    Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, Tami JA, Bennett CF, Kisner DL, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology. 1998;114:1133–42.PubMedCrossRefGoogle Scholar
  93. 93.
    Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut. 2002;51:30–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Yacyshyn B, Chey WY, Wedel MK, Yu RZ, Paul D, Chuang E. A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn’s disease. Clin Gastroenterol Hepatol. 2007;5:215–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology. 2001;120:1339–46.PubMedCrossRefGoogle Scholar
  96. 96.
    van Deventer SJ, Tami JA, Wedel MK. A randomised, controlled, double blind, escalating dose study of alicaforsen enema in active ulcerative colitis. Gut. 2004;53:1646–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Van Deventer SJH, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1415–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Miner PB, Wedel MK, Xia S, Baker BF. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther. 2006;23:1403–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Miner Jr PB, Geary RS, Matson J, Chuang E, Xia S, Baker BF, et al. Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1427–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Miner P, Wedel M, Bane B, Bradley J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment Pharmacol Ther. 2004;19:281–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Peluso I, Pallone F, Monteleone G. Interleukin-12 and Th1 immune response in Crohn’s disease: pathogenetic relevance and therapeutic implication. World J Gastroenterol. 2006;12:5606–10.PubMedGoogle Scholar
  102. 102.
    Neurath MF. IL-23: a master regulator in Crohn disease. Nat Med. 2007;13:26–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene.[see comment]. Science. 2006;314:1461–3.PubMedCrossRefGoogle Scholar
  104. 104.
    Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12:9–15.PubMedCrossRefGoogle Scholar
  105. 105.
    Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ, Present D, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351:2069–79.PubMedCrossRefGoogle Scholar
  106. 106.
    Kauffman CL, Aria N, Toichi E, McCormick TS, Cooper KD, Gottlieb AB, et al. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis.[see comment]. J Invest Dermatol. 2004;123:1037–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol. 2006;177:4917–26.PubMedGoogle Scholar
  108. 108.
    Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 2007;356:580–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Kasper LH, Everitt D, Leist TP, Ryan KA, Mascelli MA, Johnson K, et al. A phase I trial of an interleukin-12/23 monoclonal antibody in relapsing multiple sclerosis. Curr Med Res Opin. 2006;22:1671–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 2008;7:796–804.PubMedCrossRefGoogle Scholar
  111. 111.
    Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Burakoff R, Barish CF, Riff D, Pruitt R, Chey WY, Farraye FA, et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn’s disease. Inflammatory Bowel Disease. 2006;12:558–65.CrossRefGoogle Scholar
  113. 113.
    Sands BE, Jacobson EW, Sylwestrowicz T, Younes Z, Dryden G, Fedorak R, et al. Randomized, double-blind, placebo-controlled trial of the oral interleukin-12/23 inhibitor apilimod mesylate for treatment of active Crohn’s disease. Inflamm Bowel Dis. 2010;16:1209–18.PubMedGoogle Scholar
  114. 114.
    Van Assche G, Dalle I, Noman M, Aerden I, Swijsen C, Asnong K, et al. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol. 2003;98:369–76.PubMedCrossRefGoogle Scholar
  115. 115.
    Van Assche G, Sandborn WJ, Feagan BG, Salzberg BA, Silvers D, Monroe PS, et al. Daclizumab, a humanized monoclonal antibody to the interleukin-2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomized, double-blind, placebo-controlled, dose-ranging trial. Gut. 2006;55: 1568–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Creed TJ, Norman MR, Probert CS, Harvey RF, Shaw IS, Smithson J, et al. Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther. 2003;18:65–75.PubMedCrossRefGoogle Scholar
  117. 117.
    Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD, et al. Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther. 2006;23:1435–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Sands BE, Sandborn WJ, Creed TJ, Dayan CM, Van Assche G, Stempien MJ, et al. A randomized, double-blind placebo-controlled trial of basiliximab with concomitant corticosteroids in steroid-refractory ulcerative colitis. Gastroenterology. 2009; 136:A-65.CrossRefGoogle Scholar
  119. 119.
    Dieckgraefe BK, Korzenik JR, Husain A, Dieruf L. Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. Eur J Pediatr. 2002;161 Suppl 1:S88–92.PubMedGoogle Scholar
  120. 120.
    Hoover EG, DuBois JJ, Samples TL, McCullough JS, Chenaille PJ, Montes RG. Treatment of chronic enteritis in glycogen storage disease type IB with granulocyte colony-stimulating factor. J Pediatr Gastroenterol Nutr. 1996;22:346–50.PubMedCrossRefGoogle Scholar
  121. 121.
    Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte- macrophage colony-stimulating factor. Lancet. 2002;360:1478–80.PubMedCrossRefGoogle Scholar
  122. 122.
    Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ, Sargramostim in Crohn’s Disease Study Group. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352:2193–201.PubMedCrossRefGoogle Scholar
  123. 123.
    Valentine JF, Fedorak RN, Feagan B, Fredlund P, Schmitt R, Ni P, et al. Steroid-sparing properties of sargramostim in patients with corticosteroid-dependent Crohn’s disease: a randomised, double-blind, placebo-controlled, phase 2 study. Gut. 2009;58:1354–62.PubMedCrossRefGoogle Scholar
  124. 124.
    Feagan B, Anderson F, Radford-Smith G, Solovyov O, Zurdel-Dillinger S. Efficacy and safety of sargramostim in moderate to severe Crohn’s disease: results of N.O.V.E.L. 4, a phase III multicenter study. Gastroenterology. 2007;132:A-103.Google Scholar
  125. 125.
    Kelsen JR, Rosh J, Heyman M, Winter HS, Ferry G, Cohen S, et al. Phase I trial of sargramostim in pediatric Crohn’s disease. Inflamm Bowel Dis. 2010;16:1203–8.PubMedGoogle Scholar
  126. 126.
    Mannon PJ, Leon F, Fuss IJ, et al. Increased IL-10 production by peripheral blood memory T cells accompanies Crohn’s disease (CD) remission and clinical response induced by G-CSF treatment. Gastroenterology. 2006;130:W1220.Google Scholar
  127. 127.
    Korzenik JR, Dieckgraefe BK. An open-labelled study of granulocyte colony-stimulating factor in the treatment of active Crohn’s disease. Aliment Pharmacol Ther. 2005;21:391–400.PubMedCrossRefGoogle Scholar
  128. 128.
    Vaughan D, Drumm B. Treatment of fistulas with granulocyte colony-stimulating factor in a patient with Crohn’s disease. N Engl J Med. 1999;340:239–40.PubMedCrossRefGoogle Scholar
  129. 129.
    Nelson DR, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu YL, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology. 2003;38:859–68.PubMedGoogle Scholar
  130. 130.
    McInnes IB, Illei GG, Danning CL, Yarboro CH, Crane M, Kuroiwa T, et al. IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis. J Immunol. 2001;167:4075–82.PubMedGoogle Scholar
  131. 131.
    Maini R, Paulus HE, Breedveld FC. rHuIL-10 in subjects with active rheumatoid arthritis (RA): a phase I and cytokine response study. Arthritis Rheum. 1997;1997:S224.Google Scholar
  132. 132.
    Smeets TJ, Kraan MC, Versendaal J, Breedveld FC, Tak PP. Analysis of serial synovial biopsies in patients with rheumatoid arthritis: description of a control group without clinical improvement after treatment with interleukin 10 or placebo. J Rheumatol. 1999;26:2089–93.PubMedGoogle Scholar
  133. 133.
    van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s Disease Study Group. Gastroenterology. 1997;113:383–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology. 2000;119:1473–82.PubMedCrossRefGoogle Scholar
  135. 135.
    Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology. 2000;119:1461–72.PubMedCrossRefGoogle Scholar
  136. 136.
    Fedorak R, Nielsen O, Williams N, Malchow H, Forbes A, Stein B, et al. Human recombinant interleukin-10 is safe and well tolerated but does not induce remission in steroid dependent Crohn’s disease. Gastroenterology. 2001;120:A-127.Google Scholar
  137. 137.
    Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma.[see comment]. Gut. 2002;50:191–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J, et al. Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut. 2001;49:42–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin- 10. Science. 2000;289:1352–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10.[see comment]. Nat Biotechnol. 2003;21:785–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Huyghebaert N, Vermeire A, Neirynck S, Steidler L, Remaut E, Remon JP. Evaluation of extrusion/spheronisation, layering and compaction for the preparation of an oral, multi-particulate formulation of viable, hIL-10 producing Lactococcus lactis. Eur J Pharm Biopharm. 2005;59:9–15.PubMedCrossRefGoogle Scholar
  142. 142.
    Huyghebaert N, Vermeire A, Neirynck S, Steidler L, Remaut E, Remon JP. Development of an enteric-coated formulation containing freeze-dried, viable recombinant Lactococcus lactis for the ileal mucosal delivery of human interleukin-10. Eur J Pharm Biopharm. 2005;60:349–59.PubMedCrossRefGoogle Scholar
  143. 143.
    Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:754–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Reinisch W, Hommes DW, Van Assche G, Colombel JF, Gendre JP, Oldenburg B, et al. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn’s disease.[see comment]. Gut. 2006;55:1138–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease.[see comment]. Gut. 2006;55:1131–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Reinisch W, de Villiers W, Bene L, Simon L, Racz I, Katz S, et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–42.PubMedGoogle Scholar
  147. 147.
    Plevy S, Salzberg B, Van Assche G, Regueiro M, Hommes D, Sandborn W, et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology. 2007;133:1414–22.PubMedCrossRefGoogle Scholar
  148. 148.
    Baumgart DC, Targan SR, Dignass AU, Mayer L, van Assche G, Hommes DW, et al. Prospective randomized open-label multicenter phase I/II dose escalation trial of visilizumab (HuM291) in severe steroid-refractory ulcerative colitis. Inflamm Bowel Dis. 2010;16:620–9.PubMedGoogle Scholar
  149. 149.
    Sandborn WJ, Colombel JF, Frankel M, Hommes D, Lowder JN, Mayer L, et al. Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut. 2010;59:1485–92.PubMedCrossRefGoogle Scholar
  150. 150.
    Hommes D, Targan S, Dignass A, Baumgart D, Mayer L, Zang L, et al. Visilizumab therapy in subjects with moderate-to-severe, refractory Crohn’s disease. Gastroenterology. 2007;130:A-157.Google Scholar
  151. 151.
    Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005;11:713–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Preliminary results of Sangstat’s phase 2 studies of RDP58 show peak response of 77% and a 71% remission rate in ulcerative colitis patients. Additional investigation needed to determine efficacy in Crohn’s disease. Internet Press Release 2003.Google Scholar
  153. 153.
    Moreland LW, Alten R, Van den Bosch F, Appelboom T, Leon M, Emery P, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. 2002;46:1470–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349:1907–15.PubMedCrossRefGoogle Scholar
  155. 155.
    Kremer JM, Dougados M, Emery P, Durez P, Sibilia J, Shergy W, et al. Treatment of rheumatoid arthritis with the selective ­costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial.[see comment][erratum appears in Arthritis Rheum. Oct;52(10):3321]. Arthritis Rheum. 2005;52:2263–71.PubMedCrossRefGoogle Scholar
  156. 156.
    Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition.[erratum appears in N Engl J Med. 2005 Nov 24;353(21):2311]. N Engl J Med. 2005;353:1114–23.PubMedCrossRefGoogle Scholar
  157. 157.
    Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial.[see comment][summary for patients in Ann Intern Med. 2006 Jun 20;144(12):I18; PMID: 16785473]. Ann Intern Med. 2006;144:865–76.PubMedGoogle Scholar
  158. 158.
    Hanauer SB, Sandborn WJ, Sands BE, Rutgeerts PJ, Panaccione R, Bressler B, et al. A randomized placebo-controlled trial of abatacept for moderately-to-severely active Crohn’s disease (CD). Gastroenterology. 2007;107:S-86.Google Scholar
  159. 159. Scholar
  160. 160.
    Amezcua-Guerra LM, Hernandez-Martinez B, Pineda C, Bojalil R. Ulcerative colitis during CTLA-4Ig therapy in a patient with rheumatoid arthritis. Gut. 2006;55:1059–60.PubMedCrossRefGoogle Scholar
  161. 161.
    Keshav S, Ungashe S, Zheng W, Bekker P, Wright K, Schall T. Ccx282-B, an orally active inhibitor of Chemokine receptor Ccr9, shows anti-inflammatory & clinical activity in the treatment of Crohn’s disease. Gastroenterology. 2007;132:A-157.Google Scholar
  162. 162.
    Keshav S, Johnson D, Bekker P, Schall TJ. PROTECT-1 study demonstrated efficacy of the intestine-specific chemokine receptor antagonist CCX282-B (Traficet-EN) in treatment of patients with moderate to severe Crohn’s disease. Gastroenterology. 2009;136:A-65.CrossRefGoogle Scholar
  163. 163.
    Keshav S, Johnson D, Schall T, Bekker P. Chemokine receptor antagonist CCX282-B (Traficet-En™) maintained remission of Crohn’s disease in PROTECT-1 study. Gastroenterology. 2010; 138:S-86.CrossRefGoogle Scholar
  164. 164.
    Shealy D, Cai A, Staquet K, Baker A, Lacy ER, Johns L, et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. MAbs 2010;2:428–439.CrossRefGoogle Scholar
  165. 165.
    Sandbor WJ, Feagan BG, Marano CW, Strauss R, Johanns J, Zhang H, et al. A Phase 2/3 randomized, placebo-controlled, double-blind study to evaluate the safety and efficacy of subcutaneous golimumab induction therapy in patients with moderately to severely active ulcerative Colitis: PURSUIT SC. Gastroenterology. 142(5):S1–161.CrossRefGoogle Scholar
  166. 166.
    Ben-Bassat O, Iacono A, Irwin SP, Silverberg MS, Greenberg GR. Golimumab for treatment of moderate to severe anti-TNF refaractory Crohn’s disease: open label experience. Gastroenterology. 142(5):S1–804.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wojciech Blonski
    • 1
    • 2
  • Faten Aberra
    • 3
  • Gary R. Lichtenstein
    • 4
  1. 1.Division of GastroenterologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of GastroenterologyMedical University, WroclawWroclawPoland
  3. 3.Division of GastroenterologyHospital of the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Division of Gastroenterology, Department of MedicineHospital of the University of Pennsylvania, University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations