Skip to main content

Bone Health in Pediatric Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

Children with inflammatory bowel disease (IBD) are at risk for impaired bone mineral accrual. Multiple risk factors for impaired bone development have been recognized; including poor growth, delayed maturation, malnutrition, decreased weight-bearing activity, chronic inflammation, genetic susceptibility, and immunosuppressive therapies, such as glucocorticoids. The impact of these threats may be immediate, resulting in fractures during childhood and adolescence or delayed, due to suboptimal peak bone mass accrual. This chapter summarizes the normal changes in bone density and structure during growth, as well as the risk factors for poor bone accrual in childhood IBD. The classification of bone health in children and adolescents is discussed, as are the advantages and disadvantages of available technologies for the assessment of bone in children and adolescents. The difficulties in assessing and interpreting bone measures in pediatric IBD are underscored, as is the process of identifying discrete determinants of bone deficits in pediatric IBD. Currently, the prevention of bone disease is best accomplished by controlling inflammation, providing adequate calcium and vitamin D supplementation, and encouraging physical activity. However, additional studies are needed to fully appreciate the magnitude of bone disease in pediatric IBD, as well as the implications for lifetime fracture risk and targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Article  PubMed  CAS  Google Scholar 

  2. NIH. Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement. 2000;17:1–36.

    Google Scholar 

  3. Semeao EJ, Stallings VA, Peck SN, et al. Vertebral compression fractures in pediatric patients with Crohn disease. Gastroenterology. 1997;112:1710–3.

    Article  PubMed  CAS  Google Scholar 

  4. Lucarelli S, Borrelli O, Paganelli M, et al. Vertebral fractures and increased sensitivity to corticosteroids in a child with ulcerative colitis: successful use of pamidronate. J Pediatr Gastroenterol Nutr. 2006;43:533–5.

    Article  PubMed  Google Scholar 

  5. Thearle M, Horlick M, Bilezikian JP, et al. Osteoporosis: an unusual presentation of childhood Crohn disease. J Clin Endocrinol Metabol. 2000;85:2122–6.

    Article  CAS  Google Scholar 

  6. Sylvester FA. Cracking the risk of fractures in Crohn disease. J Pediatr Gastroenterol Nutr. 2004;38:113–4.

    Article  PubMed  Google Scholar 

  7. Kappelman MD, Galanko JA, Porter CQ, et al. Risk of diagnosed fractures in children with inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:1125–30.

    Article  PubMed  Google Scholar 

  8. Burnham JM, Shults J, Semeao E, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res. 2004;19:1961–8.

    Article  PubMed  Google Scholar 

  9. Garnero P, Darte C, Delmas PD. A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone. 1999;24:603–9.

    Article  PubMed  CAS  Google Scholar 

  10. Prestwood KM, Pilbeam CC, Burleson JA, et al. The short-term effects of conjugated estrogen on bone turnover in older women. J Clin Endocrinol Metab. 1994;79:366–71.

    Article  PubMed  CAS  Google Scholar 

  11. Rudge S, Hailwood S, Horne A, et al. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford). 2005;44:813–8.

    Article  CAS  Google Scholar 

  12. Baron R. General principles of bone biology. In: Favus M, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Fifthth ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 1–8.

    Google Scholar 

  13. Gilsanz V, Roe TF, Mora S, et al. Changes in vertebral bone ­density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–600.

    Article  PubMed  CAS  Google Scholar 

  14. Gilsanz V, Kovanlikaya A, Costin G, et al. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab. 1997;82:1603–7.

    Article  PubMed  CAS  Google Scholar 

  15. Gilsanz V, Gibbens DT, Roe TF, et al. Vertebral bone density in children: effect of puberty. Radiology. 1988;166:847–50.

    PubMed  CAS  Google Scholar 

  16. Han ZH, Palnitkar S, Rao DS, et al. Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res. 1996;11:1967–75.

    Article  PubMed  CAS  Google Scholar 

  17. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.

    Article  PubMed  Google Scholar 

  18. Burr DB, Turner CH. Biomechanics of bone. In: Flavus MJ, ­editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Fifthth ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 58–64.

    Google Scholar 

  19. Duan Y, Beck TJ, Wang XF, et al. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18:1766–74.

    Article  PubMed  Google Scholar 

  20. Duan Y, Turner CH, Kim BT, et al. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res. 2001;16:2267–75.

    Article  PubMed  CAS  Google Scholar 

  21. Khosla S, Melton 3rd LJ, Dekutoski MB, et al. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290:1479–85.

    Article  PubMed  CAS  Google Scholar 

  22. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11:1531–8.

    Article  PubMed  CAS  Google Scholar 

  23. Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med. 2005;353:555–65.

    Article  PubMed  CAS  Google Scholar 

  24. Schonau E, Rauch F. Biochemical markers of bone metabolism. In: Glorieux FH, editor. Pediatric bone: biology and diseases. San Diego: Academic Press; 2003. p. 339–57.

    Google Scholar 

  25. Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11:281–94.

    Article  PubMed  CAS  Google Scholar 

  26. Gokhale R, Favus MJ, Karrison T, et al. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114:902–11.

    Article  PubMed  CAS  Google Scholar 

  27. Fries W, Dinca M, Luisetto G, et al. Calcaneal ultrasound bone densitometry in inflammatory bowel disease–a comparison with double x-ray densitometry of the lumbar spine. Am J Gastroenterol. 1998;93:2339–44.

    PubMed  CAS  Google Scholar 

  28. Pollak RD, Karmeli F, Eliakim R, et al. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol. 1998;93:1483–90.

    Article  PubMed  CAS  Google Scholar 

  29. Bischoff SC, Herrmann A, Goke M, et al. Altered bone metabolism in inflammatory bowel disease. Am J Gastroenterol. 1997;92:1157–63.

    PubMed  CAS  Google Scholar 

  30. Hyams JS, Wyzga N, Kreutzer DL, et al. Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediatr Gastroenterol Nutr. 1997;24:289–95.

    Article  PubMed  CAS  Google Scholar 

  31. Semeao EJ, Jawad AF, Zemel BS, et al. Bone mineral density in children and young adults with Crohn disease. Inflamm Bowel Dis. 1999;5:161–6.

    Article  PubMed  CAS  Google Scholar 

  32. van Staa TP, Cooper C, Brusse LS, et al. Inflammatory bowel disease and the risk of fracture. Gastroenterology. 2003;125:1591–7.

    Article  PubMed  Google Scholar 

  33. Klaus J, Armbrecht G, Steinkamp M, et al. High prevalence of osteoporotic vertebral fractures in patients with Crohn disease. Gut. 2002;51:654–8.

    Article  PubMed  CAS  Google Scholar 

  34. Vestergaard P, Krogh K, Rejnmark L, et al. Fracture risk is increased in Crohn disease, but not in ulcerative colitis. Gut. 2000;46:176–81.

    Article  PubMed  CAS  Google Scholar 

  35. Bernstein CN, Blanchard JF, Leslie W, et al. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133:795–9.

    PubMed  CAS  Google Scholar 

  36. Loftus Jr EV, Crowson CS, Sandborn WJ, et al. Long-term fracture risk in patients with Crohn disease: a population-based study in Olmsted County, Minnesota. Gastroenterology. 2002;123:468–75.

    Article  PubMed  Google Scholar 

  37. Szulc P, Chapuy MC, Meunier PJ, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 1993;91:1769–74.

    Article  PubMed  CAS  Google Scholar 

  38. Kleinman RE, Baldassano RN, Caplan A, et al. Nutrition support for pediatric patients with inflammatory bowel disease: a clinical report of the North American Society for Pediatric Gastroenterology, Hepatology And Nutrition. J Pediatr Gastroenterol Nutr. 2004;39:15–27.

    Article  PubMed  Google Scholar 

  39. von Scheven E, Gordon CM, Wypij D, et al. Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab. 2006;19:821–30.

    Google Scholar 

  40. Pappa HM, Gordon CM, Saslowsky TM, et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics. 2006;118:1950–61.

    Article  PubMed  Google Scholar 

  41. Sentongo TA, Semaeo EJ, Stettler N, et al. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr. 2002;76:1077–81.

    PubMed  CAS  Google Scholar 

  42. Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis. 2006;12:1162–74.

    Article  PubMed  Google Scholar 

  43. Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994;4:382–98.

    Article  PubMed  CAS  Google Scholar 

  44. Janz KF. Validation of the CSA accelerometer for assessing children’s physical activity. Med Sci Sports Exerc. 1994;26:369–75.

    PubMed  CAS  Google Scholar 

  45. Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500–7.

    Article  PubMed  CAS  Google Scholar 

  46. Bass SL, Saxon L, Daly RM, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.

    Article  PubMed  CAS  Google Scholar 

  47. Bass S, Pearce G, Young N, et al. Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol Med. 1994;40:3–6.

    CAS  Google Scholar 

  48. Lloyd T, Petit MA, Lin HM, et al. Lifestyle factors and the development of bone mass and bone strength in young women. J Pediatr. 2004;144:776–82.

    PubMed  Google Scholar 

  49. Lloyd T, Chinchilli VM, Johnson-Rollings N, et al. Adult female hip bone density reflects teenage sports-exercise patterns but not teenage calcium intake. Pediatrics. 2000;106:40–4.

    Article  PubMed  CAS  Google Scholar 

  50. Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13:571–90.

    Article  PubMed  CAS  Google Scholar 

  51. Petit MA, McKay HA, MacKelvie KJ, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17:363–72.

    Article  PubMed  CAS  Google Scholar 

  52. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.

    Article  PubMed  CAS  Google Scholar 

  53. Harpavat M, Greenspan SL, O’Brien C, et al. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr. 2005;40:295–300.

    Article  PubMed  Google Scholar 

  54. Burnham JM, Shults J, Petit MA, et al. Alterations in proximal femur geometry in children treated with glucocorticoids for Crohn disease or nephrotic syndrome: impact of the underlying disease. J Bone Miner Res. 2007;22:551–9.

    Article  PubMed  CAS  Google Scholar 

  55. Dubner SE, Shults J, Baldassano RN, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn disease. Gastroenterology. 2009;136:123–30.

    Article  PubMed  Google Scholar 

  56. Canalis E, Bilezikian JP, Angeli A, et al. Perspectives on glucocorticoid-induced osteoporosis. Bone. 2004;34:593–8.

    Article  PubMed  CAS  Google Scholar 

  57. Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone. 2002;30:685–91.

    Article  PubMed  CAS  Google Scholar 

  58. Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  PubMed  CAS  Google Scholar 

  59. Delany AM, Gabbitas BY, Canalis E. Cortisol downregulates osteoblast alpha 1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J Cell Biochem. 1995;57:488–94.

    Article  PubMed  CAS  Google Scholar 

  60. Giustina A, Bussi AR, Jacobello C, et al. Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH-releasing hormone. J Clin Endocrinol Metab. 1995;80:122–9.

    Article  PubMed  CAS  Google Scholar 

  61. Kwan Tat S, Padrines M, Theoleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15:49–60.

    Article  PubMed  CAS  Google Scholar 

  62. Dempster DW, Moonga BS, Stein LS, et al. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997;154:397–406.

    Article  PubMed  CAS  Google Scholar 

  63. Ikeda S, Morishita Y, Tsutsumi H, et al. Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone. 2003;33:779–87.

    Article  PubMed  CAS  Google Scholar 

  64. Ortoft G, Andreassen TT, Oxlund H. Growth hormone increases cortical and cancellous bone mass in young growing rats with glucocorticoid-induced osteopenia. J Bone Miner Res. 1999;14:710–21.

    Article  PubMed  CAS  Google Scholar 

  65. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  PubMed  CAS  Google Scholar 

  66. Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141:3956–64.

    Article  PubMed  CAS  Google Scholar 

  67. Lee SE, Chung WJ, Kwak HB, et al. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.

    Article  PubMed  CAS  Google Scholar 

  69. Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine Growth Factor Rev. 2003;14:251–63.

    Article  PubMed  CAS  Google Scholar 

  70. Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7.

    Article  PubMed  CAS  Google Scholar 

  71. Gilbert L, He X, Farmer P, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277:2695–701.

    Article  PubMed  CAS  Google Scholar 

  72. Radeff JM, Nagy Z, Stern PH. Involvement of PKC-beta in PTH, TNF-alpha, and IL-1 beta effects on IL-6 promoter in osteoblastic cells and on PTH-stimulated bone resorption. Exp Cell Res. 2001;268:179–88.

    Article  PubMed  CAS  Google Scholar 

  73. WHO. The WHO Study Group: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva, Switzerland, 1994.

    Google Scholar 

  74. Faulkner RA, Davison KS, Bailey DA, et al. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21:1864–70.

    Article  PubMed  Google Scholar 

  75. Chan GM, Hess M, Hollis J, et al. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.

    PubMed  CAS  Google Scholar 

  76. Goulding A, Cannan R, Williams SM, et al. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.

    Article  PubMed  CAS  Google Scholar 

  77. Goulding A, Jones IE, Taylor RW, et al. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.

    Article  PubMed  CAS  Google Scholar 

  78. Goulding A, Jones IE, Taylor RW, et al. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.

    Article  PubMed  CAS  Google Scholar 

  79. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case–control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  PubMed  CAS  Google Scholar 

  80. Ma DQ, Jones G. Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 2002;38:497–500.

    Article  PubMed  CAS  Google Scholar 

  81. Cook SD, Harding AF, Morgan EL, et al. Association of bone mineral density and pediatric fractures. J Pediatr Orthop. 1987;7:424–7.

    Article  PubMed  CAS  Google Scholar 

  82. Skaggs DL, Loro ML, Pitukcheewanont P, et al. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16:1337–42.

    Article  PubMed  CAS  Google Scholar 

  83. Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003;18:1970–7.

    Article  PubMed  Google Scholar 

  84. Clark EM, Ness AR, Bishop NJ, et al. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.

    Article  PubMed  Google Scholar 

  85. Gafni RI, Baron J. Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr. 2004;144:253–7.

    Article  PubMed  Google Scholar 

  86. Stephens M, Batres LA, Ng D, et al. Growth failure in the child with inflammatory bowel disease. Semin Gastrointest Dis. 2001;12:253–62.

    PubMed  CAS  Google Scholar 

  87. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.

    Article  PubMed  CAS  Google Scholar 

  88. Kroger H, Vainio P, Nieminen J, et al. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995;17:157–9.

    Article  PubMed  CAS  Google Scholar 

  89. Molgaard C, Thomsen BL, Prentice A, et al. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76:9–15.

    Article  PubMed  CAS  Google Scholar 

  90. Ellis KJ, Shypailo RJ, Hardin DS, et al. Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res. 2001;16:1658–64.

    Article  PubMed  CAS  Google Scholar 

  91. Leonard MB, Shults J, Elliott DM, et al. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone. 2004;34:1044–52.

    Article  PubMed  Google Scholar 

  92. Kroger H, Kotaniemi A, Kroger L, et al. Development of bone mass and bone density of the spine and femoral neck—a prospective study of 65 children and adolescents. Bone Miner. 1993;23:171–82.

    Article  PubMed  CAS  Google Scholar 

  93. Kroger H, Kotaniemi A, Vainio P, et al. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992;17:75–85.

    Article  PubMed  CAS  Google Scholar 

  94. Wren TA, Liu X, Pitukcheewanont P, et al. Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab. 2005;90:1925–8.

    Article  PubMed  CAS  Google Scholar 

  95. Binkley TL, Specker BL, Wittig TA. Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom. 2002;5:343–53.

    Article  PubMed  Google Scholar 

  96. Hannan WJ, Tothill P, Cowen SJ, et al. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1998;78:396–7.

    Article  PubMed  CAS  Google Scholar 

  97. Maynard LM, Guo SS, Chumlea WC, et al. Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr. 1998;68:1111–7.

    PubMed  CAS  Google Scholar 

  98. van der Sluis IM, de Ridder MA, Boot AM, et al. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87:341–7. discussion 341–7.

    Article  PubMed  Google Scholar 

  99. Southard RN, Morris JD, Mahan JD, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179:735–8.

    PubMed  CAS  Google Scholar 

  100. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr. 1996;128:28–34.

    Article  PubMed  CAS  Google Scholar 

  101. Faulkner RA, Bailey DA, Drinkwater DT, et al. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int. 1996;59:344–51.

    Article  PubMed  CAS  Google Scholar 

  102. Glastre C, Braillon P, David L, et al. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70:1330–3.

    Article  PubMed  CAS  Google Scholar 

  103. Bonjour JP, Theintz G, Buchs B, et al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.

    Article  PubMed  CAS  Google Scholar 

  104. del Rio L, Carrascosa A, Pons F, et al. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res. 1994;35:362–6.

    Article  PubMed  Google Scholar 

  105. Plotkin H, Nunez M, Alvarez Filgueira ML, et al. Lumbar spine bone density in Argentine children. Calcif Tissue Int. 1996;58:144–9.

    PubMed  CAS  Google Scholar 

  106. Braillon PM, Cochat P. Analysis of dual energy X-ray absorptiometry whole body results in children, adolescents and young adults. Appl Radiat Isot. 1998;49:623–4.

    Article  PubMed  CAS  Google Scholar 

  107. Leonard MB, Propert KJ, Zemel BS, et al. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135:182–8.

    Article  PubMed  CAS  Google Scholar 

  108. Leonard MB, Feldman HI, Zemel BS, et al. Evaluation of low density spine software for the assessment of bone mineral density in children. J Bone Miner Res. 1998;13:1687–90.

    Article  PubMed  CAS  Google Scholar 

  109. Gilsanz V. Bone density in children: a review of the available techniques and indications. Eur J Radiol. 1998;26:177–82.

    Article  PubMed  CAS  Google Scholar 

  110. Ferretti JL. Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone. 1995;17:353S–64.

    Article  PubMed  CAS  Google Scholar 

  111. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin North Am. 2002;49:143–73.

    Article  PubMed  Google Scholar 

  112. Walther F, Fusch C, Radke M, et al. Osteoporosis in pediatric patients suffering from chronic inflammatory bowel disease with and without steroid treatment. J Pediatr Gastroenterol Nutr. 2006;43:42–51.

    Article  PubMed  Google Scholar 

  113. Ahmed SF, Horrocks IA, Patterson T, et al. Bone mineral assessment by dual energy X-ray absorptiometry in children with inflammatory bowel disease: evaluation by age or bone area. J Pediatr Gastroenterol Nutr. 2004;38:276–80.

    Article  PubMed  CAS  Google Scholar 

  114. Herzog D, Bishop N, Glorieux F, et al. Interpretation of bone mineral density values in pediatric Crohn disease. Inflamm Bowel Dis. 1998;4:261–7.

    Article  PubMed  CAS  Google Scholar 

  115. Burnham JM, Shults J, Semeao E, et al. Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr. 2005;82:413–20.

    PubMed  CAS  Google Scholar 

  116. Gupta A, Paski S, Issenman R, et al. Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom. 2004;7:290–5.

    Article  PubMed  Google Scholar 

  117. Sylvester FA, Davis PM, Wyzga N, et al. Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr. 2006;148:461–6.

    Article  PubMed  CAS  Google Scholar 

  118. Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106:988–98.

    Article  PubMed  Google Scholar 

  119. Bernstein CN, Leslie WD, Taback SP. Bone density in a population-based cohort of premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol. 2003;98:1094–100.

    Article  PubMed  Google Scholar 

  120. Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500–7.

    Article  PubMed  CAS  Google Scholar 

  121. Bass S, Pearce G, Young N, et al. Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol Med. 1994;40:3–6.

    CAS  Google Scholar 

  122. Robinson RJ, Krzywicki T, Almond L, et al. Effect of a low-impact exercise program on bone mineral density in Crohn disease: a randomized controlled trial. Gastroenterology. 1998;115:36–41.

    Article  PubMed  CAS  Google Scholar 

  123. Cadogan J, Eastell R, Jones N, et al. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–60.

    Article  PubMed  CAS  Google Scholar 

  124. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995;126:551–6.

    Article  PubMed  CAS  Google Scholar 

  125. Johnston Jr CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992;327:82–7.

    Article  PubMed  Google Scholar 

  126. Lee WT, Leung SS, Wang SH, et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr. 1994;60:744–50.

    PubMed  CAS  Google Scholar 

  127. Lloyd T, Andon MB, Rollings N, et al. Calcium supplementation and bone mineral density in adolescent children. N Engl J Med. 1992;327:82–7.

    Article  Google Scholar 

  128. Bonjour JP, Carrie AL, Ferrari S, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99:1287–94.

    Article  PubMed  CAS  Google Scholar 

  129. Stauffer JQ. Hyperoxaluria and intestinal disease. The role of steatorrhea and dietary calcium in regulating intestinal oxalate absorption. Am J Dig Dis. 1977;22:921–8.

    Article  PubMed  CAS  Google Scholar 

  130. Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31:979–99.

    Article  PubMed  CAS  Google Scholar 

  131. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, D.C: National Academy Press; 1997.

    Google Scholar 

  132. Heaney RP. Long-latency deficiency disease: insights from calcium and vitamin D. Am J Clin Nutr. 2003;78:912–9.

    PubMed  CAS  Google Scholar 

  133. Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr. 2004;80:1706S–9.

    PubMed  CAS  Google Scholar 

  134. Heaney RP, Davies KM, Chen TC, et al. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77:204–10.

    PubMed  CAS  Google Scholar 

  135. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89:5387–91.

    Article  PubMed  CAS  Google Scholar 

  136. Weaver CM, Fleet JC. Vitamin D requirements: current and future. Am J Clin Nutr. 2004;80:1735S–9.

    PubMed  CAS  Google Scholar 

  137. Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80:1710S–6.

    PubMed  CAS  Google Scholar 

  138. Calvo MS, Whiting SJ. Prevalence of vitamin D insufficiency in Canada and the United States: importance to health status and efficacy of current food fortification and dietary supplement use. Nutr Rev. 2003;61:107–13.

    Article  PubMed  Google Scholar 

  139. Looker AC, Dawson-Hughes B, Calvo MS, et al. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone. 2002;30:771–7.

    Article  PubMed  CAS  Google Scholar 

  140. Vieth R. Vitamin D, supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.

    PubMed  CAS  Google Scholar 

  141. Heaney RP. Vitamin D: how much do we need, and how much is too much? Osteoporos Int. 2000;11:553–5.

    Article  PubMed  CAS  Google Scholar 

  142. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. The National Academies Press, 2011.

    Google Scholar 

  143. Alaimo K, McDowell MA, Briefel RR, et al. Dietary intake of vitamins, minerals, and fiber of persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988–91. Adv Data 1994:1–28.

    Google Scholar 

  144. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  PubMed  CAS  Google Scholar 

  145. Rauch F, Plotkin H, Zeitlin L, et al. Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res. 2003;18:610–4.

    Article  PubMed  CAS  Google Scholar 

  146. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.

    Article  PubMed  CAS  Google Scholar 

  147. Glorieux FH. Bisphosphonate therapy for severe osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2000;13 Suppl 2:989–92.

    PubMed  Google Scholar 

  148. Marini JC. Do bisphosphonates make children’s bones better or brittle? N Engl J Med. 2003;349:423–6.

    Article  PubMed  Google Scholar 

  149. Whyte MP, Wenkert D, Clements KL, et al. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003;349:457–63.

    Article  PubMed  CAS  Google Scholar 

  150. Glorieux FH, Rauch F, Shapiro JR. Bisphosphonates in children with bone diseases. N Engl J Med. 2003;349:2068–71. author reply 2068–71.

    Article  PubMed  Google Scholar 

  151. Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003;142:417–23.

    Article  PubMed  CAS  Google Scholar 

  152. Gandrud LM, Cheung JC, Daniels MW, et al. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab. 2003;16:887–92.

    Article  PubMed  CAS  Google Scholar 

  153. Cimaz R, Gattorno M, Sormani MP, et al. Changes in markers of bone turnover and inflammatory variables during alendronate therapy in pediatric patients with rheumatic diseases. J Rheumatol. 2002;29:1786–92.

    PubMed  CAS  Google Scholar 

  154. Acott PD, Wong JA, Lang BA, et al. Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol. 2005;20:368–73.

    Article  PubMed  Google Scholar 

  155. Stewart WA, Acott PD, Salisbury SR, et al. Bone mineral density in juvenile dermatomyositis: assessment using dual x-ray absorptiometry. Arthritis Rheum. 2003;48:2294–8.

    Article  PubMed  CAS  Google Scholar 

  156. Rodd C. Bisphosphonates in dialysis and transplantation patients: efficacy and safety issues. Perit Dial Int. 2001;21 Suppl 3:S256–60.

    PubMed  Google Scholar 

  157. Klein GL, Wimalawansa SJ, Kulkarni G, et al. The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: a double-blind, randomized, controlled study. Osteoporos Int. 2005;16:631–5.

    Article  PubMed  CAS  Google Scholar 

  158. Ringuier B, Leboucher B, Leblanc M, et al. Effect of oral biphosphonates in patients with cystic fibrosis and low bone mineral density. Arch Pediatr. 2004;11:1445–9.

    Article  PubMed  CAS  Google Scholar 

  159. Hawker GA, Ridout R, Harris VA, et al. Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil. 2005;86:284–8.

    Article  PubMed  Google Scholar 

  160. Gordon CM. Bone loss in children with Crohn disease: evidence of “osteoimmune” alterations. J Pediatr. 2006;148:429–32.

    Article  PubMed  Google Scholar 

  161. Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom. 2005;8:57–64.

    Article  PubMed  Google Scholar 

  162. McKay HA, Petit MA, Bailey DA, et al. Analysis of proximal femur DXA scans in growing children: comparisons of different protocols for cross-sectional 8-month and 7-year longitudinal data. J Bone Miner Res. 2000;15:1181–8.

    Article  PubMed  CAS  Google Scholar 

  163. Shypailo RJ, Ellis KJ. Bone assessment in children: comparison of fan-beam DXA analysis. J Clin Densitom. 2005;8:445–53.

    Article  PubMed  CAS  Google Scholar 

  164. Koo WW, Hammami M, Shypailo RJ, et al. Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry. J Am Coll Nutr. 2004;23:647–50.

    PubMed  Google Scholar 

  165. Katzman DK, Bachrach LK, Carter DR, et al. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  PubMed  CAS  Google Scholar 

  166. Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.

    PubMed  CAS  Google Scholar 

  167. Bianchi ML, Cimaz R, Bardare M, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum. 2000;43:1960–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Thayu MD, MSCE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thayu, M., Semeao, E. (2013). Bone Health in Pediatric Inflammatory Bowel Disease. In: Mamula, P., Markowitz, J., Baldassano, R. (eds) Pediatric Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5061-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5061-0_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5060-3

  • Online ISBN: 978-1-4614-5061-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics