Skip to main content

On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media

  • Conference paper
  • First Online:
Book cover Modelling and Simulation in Fluid Dynamics in Porous Media

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 28))

Abstract

In this chapter, we present the theoretical analysis of coupled incompressible Navier–Stokes (or Stokes) flows and Darcy flows with the Beavers–Joseph–Saffman interface condition. We discuss alternative interface and porous media models. We review some finite element methods used by several authors in this coupling and present numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic (Elsevier), Amsterdam (2003)

    MATH  Google Scholar 

  2. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113, 209–259 (1991)

    Google Scholar 

  3. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113, 261–298 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10, 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arbogast, T., Brunson, D.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11, 207–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Badía, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47, 1971–2000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115, 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  10. Braack, M., Schieweck, F.: Equal-order finite elements with local projection stabilization for the Darcy–Brinkman equations. Comput. Methods Appl. Mech. Eng. 200, 9–12 (2011)

    Article  MathSciNet  Google Scholar 

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  12. Burman, E., Hansbo, P.: A unified stabilized method for Stokes and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, Y., Gunzburger, M., Hua, F., Wang, X.: Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8, 1–25 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Cesmelioglu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem. J. Diff. Equations. 252, 4138–4175 (2012)

    Article  MATH  Google Scholar 

  16. Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198, 3806–3820 (2009)

    Article  MATH  Google Scholar 

  17. Chidyagwai, P., Rivière, B.: A two-grid method for coupled free flow with porous media flow. Adv. Water Resour. 34, 1113–1123 (2011)

    Article  Google Scholar 

  18. Ciarlet, P.G.: Basic error estimates for elliptic problems—finite element methods, part 1. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 17–352. Elsevier/North-Holland, Amsterdam (1991)

    Google Scholar 

  19. Cockburn, B., Kanschat, G., Schoetzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Kanschat, G., Schoetzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    MATH  Google Scholar 

  21. Cockburn, B., Kanschat, G., Schoetzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications—ENUMATH 2001, pp. 3–20. Springer, Milan (2003)

    Chapter  Google Scholar 

  23. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems. In: Widlund, O., Keyes, D. (eds.) Lecture Notes in Computational Science and Engineering, vol. 55, pp. 373–380. Springer, Berlin (2007)

    Google Scholar 

  26. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Gatica, G., Meddahi, S., Oyarzua, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gatica, G.N., Oyarzua, R., Sayas, F.-J.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comput. 80, 1911–1948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gatica, G.N., Oyarzua, R., Sayas, F.-J.: Convergence of a family of Galerkin discretizations for the Stokes–Darcy coupled problem. Numer. Methods Partial Differ. Equ. 27, 721–748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Girault, V., Raviart, P.-A.: Finite Element Approximations of the Navier–Stokes Equations. Springer, Heidelberg (1986)

    Google Scholar 

  32. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guzman, J., Rivière, B.: Sub-optimal convergence of non-symmetric discontinuous Galerkin methods for odd polynomial approximations. J. Sci. Comput. 40, 273–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hanspal, N., Waghode, A., Nassehi, V., Wakeman, R.: Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transport Porous Med. 64, 1573–1634 (2006)

    Article  Google Scholar 

  35. Iliev, O.P., Lazarov, R.D., Willems, J.: Discontinuous Galerkin subgrid finite element method for approximation of heterogeneous Brinkman’s equations. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Lecture Notes in Computer Science, vol. 5910, pp. 14–25. Springer, Heidelberg (2010)

    Google Scholar 

  36. Jaeger, W., Mikelic, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 23, 403–465 (1996)

    Google Scholar 

  37. Jaeger, W., Mikelic, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jaeger, W., Mikelic, A.: Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transport Porous Med. 78, 489–508 (2009)

    Article  Google Scholar 

  39. Jaeger, W., Mikelic, A., Neuss, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 2006–2028 (2000)

    Article  MathSciNet  Google Scholar 

  40. Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo. 47, 129–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kanschat, G.: Discontinuous Galerkin Methods for Viscous Flow. Deutscher Universitätsverlag, Wiesbaden (2007)

    Google Scholar 

  42. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Karper, T., Mardal, K.A., Winther, R.: Unified finite element discretizations of coupled Darcy–Stokes flow. Numer. Methods Partial Differ. Equ. 25, 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. LeSaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical aspects of finite elements in partial differential equations, pp. 89–123. Academic, New York (1974)

    Google Scholar 

  46. Lions, J.-L., Magenes, E.: Nonhomogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  Google Scholar 

  47. Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22, 479–500 (2005)

    Article  MathSciNet  Google Scholar 

  50. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Frontiers in Applied Mathematics. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  51. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 292–315 (1971)

    Google Scholar 

  54. Tecplot, Inc. http://www.tecplot.com/

  55. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comp. 31, 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45, 1269–1286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from the UT Austin/Portugal Collaboration, Project: UT Austin/MAT/0066/2008 “Reaction-Diffusion in Porous Media.” The second author acknowledges support by NSF grant no. DMS–0810387 and by KAUST award no. KUS-C1-016-04. The third author acknowledges support from NSF with the grant DMS 0810422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Girault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Girault, V., Kanschat, G., Rivière, B. (2013). On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media. In: Ferreira, J., Barbeiro, S., Pena, G., Wheeler, M. (eds) Modelling and Simulation in Fluid Dynamics in Porous Media. Springer Proceedings in Mathematics & Statistics, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5055-9_1

Download citation

Publish with us

Policies and ethics