Skip to main content

The Constructal Theory of Electrokinetic Transport Through a Porous System

  • Chapter
  • First Online:
Constructal Law and the Unifying Principle of Design

Part of the book series: Understanding Complex Systems ((UCS))

  • 1344 Accesses

Abstract

Electrokinetic transfer results from applying an electrical current or an electrical field to a medium in order to accelerate and control the transfer of charged species. The applications of such techniques are widespread, ranging from drug delivery [1] to ground cleanup [2, 3] to chloride and nuclear decontamination [4–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsieh S. Drug Permeation Enhancement, Theory and Applications.Marcel Dekker, Inc. New York, USA; 1994

    Google Scholar 

  2. Probstein RF, Hicks RE. Removal of contaminants from soils by electric fields. Science. 1993;260:498–503.

    Article  Google Scholar 

  3. Sogorka DB, Gabert H, Sogorka B. Emerging technologies for soils contaminated with metals—electrokinetic remediation. Hazard Ind Waste. 1998;30:673–85.

    Google Scholar 

  4. Dickenson KS, Ally MR, Brown CH, Morris MI, Wilson-Nichols MJ. Demonstration recommendations for accelerated testing of concrete decontamination methods. Washington: DOE; 1995.

    Book  Google Scholar 

  5. DePaoli DW, Harris MT, Morgan IL, Ally MR. Investigation of electrokinetic decontamination of concrete. Symposium on separation science and technology for energy applications, Vol. 32, pp. 387–404; 1997

    Google Scholar 

  6. Frizon F, Lorente S, Ollivier JP, Thouvenot P. Modeling the decontamination by electromigration of a porous medium. J Porous Media. 2004;7(3):213–27.

    Article  Google Scholar 

  7. Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University; 2000.

    MATH  Google Scholar 

  8. Wechsatol W, Lorente S, Bejan A. Development of tree-shaped flows by adding new users to existing networks of hot water pipes. Int J Heat Mass Transfer. 2002;45:723–33.

    Article  MATH  Google Scholar 

  9. Rocha LAO, Lorente S, Bejan A. Constructal design for cooling a disc-shaped area by conduction. Int J Heat Mass Transfer. 2002;45:1643–52.

    Article  MATH  Google Scholar 

  10. Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures designed by minimizing path lengths. Int J Heat Mass Transfer. 2002;45:3299–312.

    Article  MATH  Google Scholar 

  11. Lorente S, Bejan A. Svelteness, freedom to morph, and constructal multi-scale flow structures. Int J Therm Sci. 2005;44(12):1123–30.

    Article  Google Scholar 

  12. da Silva AK, Lorente S, Bejan A. Constructal tree heat exchangers. J Appl Phys. 2004;96(3):1709–18.

    Article  Google Scholar 

  13. Wechsatol W, Lorente S, Bejan A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transfer. 2002;45:4911–24.

    Article  MATH  Google Scholar 

  14. Vargas JVC, Ordonez JC, Bejan A. Constructal PEM fuel cell stack design. Int J Heat Mass Transfer. 2005;48(21–22):4410–27.

    Article  Google Scholar 

  15. Reis AH, Miguel AF, Bejan A. Constructal theory of particle agglomeration and design of air-cleaning devices. J Phys D: Appl Phys. 2006;39(10):2311–8.

    Article  Google Scholar 

  16. Miguel AF. Constructal pattern formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions. J Theor Biol. 2006;242(4):954–61.

    Article  MathSciNet  Google Scholar 

  17. Miguel AF. Shape and complexity in living systems. In: Bejan A, Lorente S, Miguel AF, Reis AH, editors. Along with constructal theory. Presses de l’Université de Lausanne, Lausanne, Switzerland; 2007

    Google Scholar 

  18. Reis AH, Bejan A. Constructal theory of global circulation and climate. Int J Heat Mass Transfer. 2006;49(11–12):1857–75.

    Article  Google Scholar 

  19. Wang KM, Lorente S, Bejan A. Vascularized networks with two optimized channel sizes. J Phys D: Appl Phys. 2006;39:3086–96.

    Article  Google Scholar 

  20. Bejan A, Lorente S, Wang KM. Networks of channels for self-healing composite materials. J Appl Phys. 2006;100:033528 1–6.

    Google Scholar 

  21. Kim S, Lorente S, Bejan A. Vascularized materials: tree-shaped flow architectures matched canopy to canopy. J Appl Phys. 2006;100: 063525 1–8.

    Google Scholar 

  22. Lorente S, Bejan A. Heterogeneous porous media as multiscale structures for maximum flow access. J Appl Phys. 2006;100:114909.

    Article  Google Scholar 

  23. Bejan A. Convection heat transfer. 3rd ed. Hoboken: Wiley Hoboken, New Jersey, USA; 2004.

    Google Scholar 

  24. Bégué P, Lorente S. Migration versus diffusion through porous media: time dependent scale-analysis. J Porous Media. 2006;9(7):637–50.

    Google Scholar 

  25. Lorente S. Constructal view of electrokinetic transfer through porous media. J Phys D: Appl Phys. 2007;40:2941–7.

    Article  Google Scholar 

  26. Auger J, Yssorche-Cubaynes MP, Lorente S, Cussigh F, Demillecamps L. Ionic access through porous media with distributed electrodes. J Appl Phys. 2008;104:084913.

    Article  Google Scholar 

  27. Révil A. Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci. 1999;212:503–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lorente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lorente, S. (2013). The Constructal Theory of Electrokinetic Transport Through a Porous System. In: Rocha, L., Lorente, S., Bejan, A. (eds) Constructal Law and the Unifying Principle of Design. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5049-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5049-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5048-1

  • Online ISBN: 978-1-4614-5049-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics