Advertisement

The Constructal Theory of Electrokinetic Transport Through a Porous System

  • Sylvie LorenteEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Electrokinetic transfer results from applying an electrical current or an electrical field to a medium in order to accelerate and control the transfer of charged species. The applications of such techniques are widespread, ranging from drug delivery [1] to ground cleanup [2, 3] to chloride and nuclear decontamination [4–6].

Keywords

Ionic Species Transition Depth Planck Equation Constructal Theory Electrical Potential Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hsieh S. Drug Permeation Enhancement, Theory and Applications.Marcel Dekker, Inc. New York, USA; 1994Google Scholar
  2. 2.
    Probstein RF, Hicks RE. Removal of contaminants from soils by electric fields. Science. 1993;260:498–503.CrossRefGoogle Scholar
  3. 3.
    Sogorka DB, Gabert H, Sogorka B. Emerging technologies for soils contaminated with metals—electrokinetic remediation. Hazard Ind Waste. 1998;30:673–85.Google Scholar
  4. 4.
    Dickenson KS, Ally MR, Brown CH, Morris MI, Wilson-Nichols MJ. Demonstration recommendations for accelerated testing of concrete decontamination methods. Washington: DOE; 1995.CrossRefGoogle Scholar
  5. 5.
    DePaoli DW, Harris MT, Morgan IL, Ally MR. Investigation of electrokinetic decontamination of concrete. Symposium on separation science and technology for energy applications, Vol. 32, pp. 387–404; 1997Google Scholar
  6. 6.
    Frizon F, Lorente S, Ollivier JP, Thouvenot P. Modeling the decontamination by electromigration of a porous medium. J Porous Media. 2004;7(3):213–27.CrossRefGoogle Scholar
  7. 7.
    Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University; 2000.zbMATHGoogle Scholar
  8. 8.
    Wechsatol W, Lorente S, Bejan A. Development of tree-shaped flows by adding new users to existing networks of hot water pipes. Int J Heat Mass Transfer. 2002;45:723–33.zbMATHCrossRefGoogle Scholar
  9. 9.
    Rocha LAO, Lorente S, Bejan A. Constructal design for cooling a disc-shaped area by conduction. Int J Heat Mass Transfer. 2002;45:1643–52.zbMATHCrossRefGoogle Scholar
  10. 10.
    Lorente S, Wechsatol W, Bejan A. Tree-shaped flow structures designed by minimizing path lengths. Int J Heat Mass Transfer. 2002;45:3299–312.zbMATHCrossRefGoogle Scholar
  11. 11.
    Lorente S, Bejan A. Svelteness, freedom to morph, and constructal multi-scale flow structures. Int J Therm Sci. 2005;44(12):1123–30.CrossRefGoogle Scholar
  12. 12.
    da Silva AK, Lorente S, Bejan A. Constructal tree heat exchangers. J Appl Phys. 2004;96(3):1709–18.CrossRefGoogle Scholar
  13. 13.
    Wechsatol W, Lorente S, Bejan A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transfer. 2002;45:4911–24.zbMATHCrossRefGoogle Scholar
  14. 14.
    Vargas JVC, Ordonez JC, Bejan A. Constructal PEM fuel cell stack design. Int J Heat Mass Transfer. 2005;48(21–22):4410–27.CrossRefGoogle Scholar
  15. 15.
    Reis AH, Miguel AF, Bejan A. Constructal theory of particle agglomeration and design of air-cleaning devices. J Phys D: Appl Phys. 2006;39(10):2311–8.CrossRefGoogle Scholar
  16. 16.
    Miguel AF. Constructal pattern formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions. J Theor Biol. 2006;242(4):954–61.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Miguel AF. Shape and complexity in living systems. In: Bejan A, Lorente S, Miguel AF, Reis AH, editors. Along with constructal theory. Presses de l’Université de Lausanne, Lausanne, Switzerland; 2007Google Scholar
  18. 18.
    Reis AH, Bejan A. Constructal theory of global circulation and climate. Int J Heat Mass Transfer. 2006;49(11–12):1857–75.CrossRefGoogle Scholar
  19. 19.
    Wang KM, Lorente S, Bejan A. Vascularized networks with two optimized channel sizes. J Phys D: Appl Phys. 2006;39:3086–96.CrossRefGoogle Scholar
  20. 20.
    Bejan A, Lorente S, Wang KM. Networks of channels for self-healing composite materials. J Appl Phys. 2006;100:033528 1–6.Google Scholar
  21. 21.
    Kim S, Lorente S, Bejan A. Vascularized materials: tree-shaped flow architectures matched canopy to canopy. J Appl Phys. 2006;100: 063525 1–8.Google Scholar
  22. 22.
    Lorente S, Bejan A. Heterogeneous porous media as multiscale structures for maximum flow access. J Appl Phys. 2006;100:114909.CrossRefGoogle Scholar
  23. 23.
    Bejan A. Convection heat transfer. 3rd ed. Hoboken: Wiley Hoboken, New Jersey, USA; 2004.Google Scholar
  24. 24.
    Bégué P, Lorente S. Migration versus diffusion through porous media: time dependent scale-analysis. J Porous Media. 2006;9(7):637–50.Google Scholar
  25. 25.
    Lorente S. Constructal view of electrokinetic transfer through porous media. J Phys D: Appl Phys. 2007;40:2941–7.CrossRefGoogle Scholar
  26. 26.
    Auger J, Yssorche-Cubaynes MP, Lorente S, Cussigh F, Demillecamps L. Ionic access through porous media with distributed electrodes. J Appl Phys. 2008;104:084913.CrossRefGoogle Scholar
  27. 27.
    Révil A. Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci. 1999;212:503–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LMDC (Laboratoire Matériaux et Durabilité des Constructions)INSA, Université de ToulouseToulouse, Cedex 04France

Personalised recommendations