Advertisement

Constructal Design of T-Shaped Water Distribution Networks

  • P. BieupoudeEmail author
  • Y. Azoumah
  • P. Neveu
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

More than one billion people do not have access to clean drinking water both in urban and rural areas in the world. This is why, according to a number of scientists involved in drinking water engineering, hundreds of kilometers of networks for water distribution will be constructed or rehabilitated in the coming decades because of both population growth and the crucial need of water services. Therefore the need to optimally design these systems will be increasing everywhere (North and South) and will keep on increasing, in particular in developing countries, very poorly equipped and in need to make strong efforts for the construction of such systems. According to literature, the three main design constraints that are generally met in water distribution projects are water quality, pumping energy, and investment cost [1–4]. In most of the cases, the design problem formulates as follows: “a certain population of density \( {\sigma_{\rm{p}}} \) grouped in households, distributed over a given area, needs to be supplied in drinking water through a distribution network. A lot of technically acceptable solutions can be found to this problem. Some methods differ from the others in terms of total head losses, overall residence time, initial or total investment due to the design” [5]. The challenge for engineers relies on how to optimally design the network in terms of pumping energy and the evolution of water quality in the network.

Notes

Acknowledgements

The International Institute for Water and Environmental Engineering 2iE, 01 BP 594 Ouagadougou 01, Burkina Faso (www.2ie-edu.org), and its financial partners are gratefully acknowledged for their supports that permitted to successfully achieve this work.

References

  1. 1.
    Gupta I, Bassin J, Gupta A, Khanna P. Optimization of water distribution systems. Environ Softw. 1993;8:101–13.CrossRefGoogle Scholar
  2. 2.
    Savic D, Walters G. Genetic algorithms for least-cost design of water distribution networks. J Water Res Pl-ASCE. 1997;123:67–77.CrossRefGoogle Scholar
  3. 3.
    Gupta I, Gupta A, Khanna P. Genetic algorithm for optimization of water distribution systems. Environ Modell Softw. 1999;14:437–46.CrossRefGoogle Scholar
  4. 4.
    Klempous R, Kotowski J, Nikodem J, Ulasiewicz J. Optimization algorithms of operative control in water distribution systems. J Comput Appl Math. 1997;84:91–9.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bieupoude P. Approche constructal pour l’optimisation de réseaux hydrauliques, Thèse de doctorat, Université de Perpignan, France et 2iE Institut International d’Ingénierie de l’Eau et de l’Environnement; Ouagadougou, Burkina Faso; 2011Google Scholar
  6. 6.
    Chu C, Lin M, Liu G, Sung Y. Application of immune algorithms on solving minimum-cost problem of water distribution network. Math Comput Model. 2008;48:1888–900.zbMATHCrossRefGoogle Scholar
  7. 7.
    Baños R, Bans R, Gil C, Reca J, Montoya F. A memetic algorithm applied to the design of water distribution networks. Appl Soft Comput. 2010;10:261–6.CrossRefGoogle Scholar
  8. 8.
    Mustonen S, Tissari S, Huikko L, Kolehmainen M, Lehtola M, Hirvonen A. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods. Water Res. 2008;42:2421–30.CrossRefGoogle Scholar
  9. 9.
    Bolognesi A, Bragalli C, Marchi A, Artina S. Genetic heritage evolution by stochastic transmission in the optimal design of water distribution network. Adv Eng Softw. 2010;41:792–801.zbMATHCrossRefGoogle Scholar
  10. 10.
    Simpson A, Dandy G, Murphy L. Genetic algorithm compared to other techniques for pipe optimization. J Water Res Pl-ASCE. 1994;120:423–43.CrossRefGoogle Scholar
  11. 11.
    Kohpaei J, Sathasivan A. Chlorine decay prediction in bulk water using the parallel second order model: an analytical solution development. Chem Eng J. 2011;171:232–41.CrossRefGoogle Scholar
  12. 12.
    Bai D, Pei-jun Yang P, Song L. Optimal design method of looped water distribution network. Systems Engineering – Theory and Practice. 2007;27:137–43.CrossRefGoogle Scholar
  13. 13.
    Todini E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water. 2000;2:115–22.CrossRefGoogle Scholar
  14. 14.
    Bejan A. Shape and structure from engineering to nature. UK: Cambridge; 2000.zbMATHGoogle Scholar
  15. 15.
    Bejan A, Lorente S. Design with constructal theory. Hoboken: Wiley; 2008.CrossRefGoogle Scholar
  16. 16.
    Azoumah Y, Mazet N, Neveu P. Constructal network for heat and mass transfer in a solid-gas reactive porous medium. Int J Heat Mass Tran. 2004;47:2961–70.zbMATHCrossRefGoogle Scholar
  17. 17.
    Azoumah Y, Neveu P, Mazet N. Constructal design combined with entropy generation minimization for solid–gas reactors. Int J Therm Sci. 2006;45:716–28.CrossRefGoogle Scholar
  18. 18.
    Tondeur D, Fan Y, Luo L. Constructal optimization of arborescent structures with flow singularities. Chem Eng Sci. 2009;64(2009):3968–82.Google Scholar
  19. 19.
    Miguel A. Dendridic structures for fluid flow: laminar turbulent and constructal design. J Fluid Struc. 2010;26:330–5.CrossRefGoogle Scholar
  20. 20.
    Bejan A, Marden H. The constructal unification of biological and geophysical design. Phys Life Rev. 2009;6:85–102.CrossRefGoogle Scholar
  21. 21.
    Bejan A, Lorente S. The constructal law and the evolution of design in nature. Phys Life Rev. 2011;8:209–40.CrossRefGoogle Scholar
  22. 22.
    Bejan A, Rocha L, Lorente S. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int J Therm Sci. 2000;39:949–60.CrossRefGoogle Scholar
  23. 23.
    Wechsatol W, Lorente S, Bejan A. Tree-shaped insulated designs for the uniform distribution of hot water over an area. Int J Heat Mass Tran. 2001;44:3111–23.zbMATHCrossRefGoogle Scholar
  24. 24.
    Wechsatol W, Lorente S, Bejan A. Development of tree-shaped flows by adding new users to existing networks of hot water pipes. Int J Heat Mass Tran. 2002;45:723–33.zbMATHCrossRefGoogle Scholar
  25. 25.
    Wechsatol W, Lorente S, Bejan A. Tree-shaped network with loops. Int J Heat Mass Tran. 2005;48:573–83.zbMATHCrossRefGoogle Scholar
  26. 26.
    Wechsatol W, Lorente S, Bejan A. Tree-shaped flow structures with local junction losses. Int J Heat Mass Tran. 2006;49:2957–64.zbMATHCrossRefGoogle Scholar
  27. 27.
    Gosselin L, Bejan A. Tree networks for minimal pumping power. Int J Therm Sci. 2005;44:53–63.CrossRefGoogle Scholar
  28. 28.
    Gosselin L. Optimization of tree-shaped fluid networks with size limitations. Int J Therm Sci. 2007;46:434–43.CrossRefGoogle Scholar
  29. 29.
    Bieupoude P, Azoumah Y, Neveu P. Environmental optimization of tree-shaped water distribution networks. Water resources management VI. Proceedings of the sixth International Conference on Sustainable Water Resources Management; California 23-25 May; 2011. p. 99–109Google Scholar
  30. 30.
    Bieupoude P, Azoumah Y Neveu P. Constructal tree-shaped water distribution networks by an environmental approach. Int J Des Nat Ecodyn. (Forthcoming 2011)Google Scholar
  31. 31.
    Bieupoude P, Azoumah Y, Neveu P. Perspectives to urban water networks computer-based optimization methods by integrating the constructal design. Comp Environ Urban. (Forthcoming 2012)Google Scholar
  32. 32.
    Chase D, Savic D, Walski T. Haestad methods. In: Water distribution modeling. USA: Haestad press; 2001Google Scholar
  33. 33.
    Carlier M. Hydraulique générale et appliquée. Paris: Eyrolles; 1972.Google Scholar
  34. 34.
    Rossman L. EPANET 2 Users manual, Chapter 1. Cincinnati; 2000 EPA, United States. 10.1038/News.2008.1004
  35. 35.
    Bejan A, Lorente S. La loi constructale. Paris: L’Harmattan; 2005.Google Scholar
  36. 36.
    Azoumah Y, Bieupoude P, Neveu P. Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison. Int Commun Heat Mass. 2012;39:182–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LESEE-2iE, Laboratoire Energie Solaire et Economie d’EnergieInstitut International d’Ingénierie de l’Eau et de l’Environnement, 01Ouagadougou 01Burkina Faso
  2. 2.Laboratoire Procédés Matériaux et Energie Solaire, PROMES-CNRS UPR 8521Université de PerpignanPerpignan cedexFrance

Personalised recommendations