Advertisement

Constructal Design of Thermal Systems

  • L. A. O. RochaEmail author
  • E. D. dos Santos
  • D. C. Cunha
  • F. L. Garcia
  • G. Lorenzini
  • C. Biserni
  • M. Letzow
  • J. A. V. Costa
  • J. A. Souza
  • L. A. Isoldi
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Constructal theory and design accounts for the universal phenomenon of generation and evolution of design [1, 2]. Constructal theory has been used to explain deterministically the generation of shape in flow structures of nature (river basins, lungs, atmospheric circulation, animal shapes, vascularized tissues, etc.) based on an evolutionary principle of flow access in time. That principle is the Constructal law: “for a flow system to persist in time “to survive,” it must evolve in such way that it provides easier and easier access to the currents that flow through it” [2]. This same principle is used to yield new designs for electronics, fuel cells, and tree networks for transport of people, goods, and information [3]. The applicability of this method/law to the physics of engineered flow systems has been widely discussed in recent literature [4–7].

Keywords

Optimal Shape Volumetric Flow Rate Constructal Design Constant Thermal Conductivity Cavity Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bejan A. Shape and structure, from engineering to nature. UK: Cambridge University Press; 2000.zbMATHGoogle Scholar
  2. 2.
    Bejan A, Lorente S. Design with constructal theory. New York: John Wiley and Sons Inc; 2008.CrossRefGoogle Scholar
  3. 3.
    Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys. 2006;100:041301.CrossRefGoogle Scholar
  4. 4.
    Beyene A, Peffley J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design. J Energ Eng-ASCE. 2009;135:112–8.CrossRefGoogle Scholar
  5. 5.
    Kim Y, Lorente S, Bejan A. Constructal multi-tube configuration for natural and forced convection in cross-flow. Int J Heat Mass Tran. 2010;53:5121–8.zbMATHCrossRefGoogle Scholar
  6. 6.
    Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011;36:1087–96.CrossRefGoogle Scholar
  7. 7.
    Kim Y, Lorente S, Bejan A. Steam generator structure: continuous model and constructal design. Int J Energ Res. 2011;35:336–45.CrossRefGoogle Scholar
  8. 8.
    Aziz A. Optimum dimensions of extended surfaces operating in a convective environment. Applied Mechanics Reviews. 1992;45:155–73.CrossRefGoogle Scholar
  9. 9.
    Kraus AD. Developments in the analysis of finned arrays. Donald Q. Kern Award lecture, National Heat Transfer Conference; Aug11; 1997, Baltimore, MD; Int J Transport Phenomena. 1999;1141–164Google Scholar
  10. 10.
    Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Tran. 2000;43:2101–15.zbMATHCrossRefGoogle Scholar
  11. 11.
    Lorenzini G, Rocha LAO. Constructal design of Y-shaped assembly of fins. Int J Heat Mass Tran. 2006;49:4552–7.zbMATHCrossRefGoogle Scholar
  12. 12.
    Xie ZH, Chen LG, Sun FR. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci Chine Tech Sci. 2010;53:2756–64.CrossRefGoogle Scholar
  13. 13.
    Lorenzini G, Rocha LAO. Constructal design of T-Y assembly of fins for an optimized heat removal. Int J Heat Mass Tran. 2009;52:1458–63.zbMATHCrossRefGoogle Scholar
  14. 14.
    Lorenzini G, Correa RL, dos Santos ED, Rocha LAO. Constructal design of complex assembly of fins, J Heat Trans-T ASME, Vol. 2011;133:1-1–1-7Google Scholar
  15. 15.
    Biserni C, Rocha LAO, Bejan A. Inverted fins: geometric optimization of the intrusion into a conducting wall. Int J Heat Mass Tran. 2004;47:2577–86.zbMATHCrossRefGoogle Scholar
  16. 16.
    Rocha LAO, Montanari GC, dos Santos ED, Rocha AS. Constructal design applied to the study of cavities into a solid conducting wall. Therm Eng. 2007;6:41–7.Google Scholar
  17. 17.
    Biserni C, Rocha LAO, Stanescu G, Lorenzini E. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Tran. 2007;50:2132–8.zbMATHCrossRefGoogle Scholar
  18. 18.
    Lorenzini G, Rocha LAO. Geometric optimization of T-Y-shaped cavity according to constructal design. Int J Heat Mass Tran. 2009;52:4683–8.zbMATHCrossRefGoogle Scholar
  19. 19.
    Rocha LAO, Lorenzini G, Biserni C, Cho Y. Constructal design of a cavity cooled by convection. Int J Des Nat Ecodyn. 2010;3:212–20.CrossRefGoogle Scholar
  20. 20.
    Cunha DC, Souza JA, Rocha LAO, Costa JAV. Hexahedral modular bioreactor for solid state bioprocesses. World J Microbiol Biotech. 2009;25:2173–8.CrossRefGoogle Scholar
  21. 21.
    Cunha DC, Souza JA, Costa JAV, Rocha LAO. Constructal design of solid state fermentation bioreactors. Int J Energ Tech. 2009;1:1–8.CrossRefGoogle Scholar
  22. 22.
    Mitchell D, Parra R, Aldred D, Magan N. Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. J Appl Microbiol. 2004;97:439–45.CrossRefGoogle Scholar
  23. 23.
    Parra R, Aldred D, Archer DB, Magan N. Water activity, solute and temperature modify growth and spore production of wild type and genetically engineered Aspergillus niger strains. Enzyme and Microbial Technology. 2004;35:232–7.CrossRefGoogle Scholar
  24. 24.
    Mitchell DA, von Meien OF, Krieger N. Recent developments in modeling of solid- state fermentation: heat and mass transfer in bioreactors. Biochem Eng J. 2003;13:137–47.CrossRefGoogle Scholar
  25. 25.
    Mitchell DA, Pandey A, Sangsurasak P, Krieger N. Scale-up strategies for packed-bed bioreactors for solid-state fermentation. Process Biochemistry. 1999;35:167–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. A. O. Rocha
    • 1
    Email author
  • E. D. dos Santos
    • 2
  • D. C. Cunha
    • 3
  • F. L. Garcia
    • 1
  • G. Lorenzini
    • 4
  • C. Biserni
    • 5
  • M. Letzow
    • 6
  • J. A. V. Costa
    • 7
  • J. A. Souza
    • 8
  • L. A. Isoldi
    • 2
  1. 1.Departamento de Engenharia Mecânica (DEMEC)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Escola de Engenharia (EE)Universidade Federal de Rio Grande (FURG)Rio GrandeBrazil
  3. 3.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do SulRio GrandeBrazil
  4. 4.Dipartimento di Ingegneria IndustrialeUniversità degli Sudi di ParmaParmaItaly
  5. 5.Dipartimento di Ingegneria Energetica, Nucleare e del Controllo AmbientaleUniversità degli Studi di BolognaBolognaItaly
  6. 6.Programa de Pós-Graduação em Modelagem ComputacionalUniversidade Federal do Rio GrandeRio GrandeBrazil
  7. 7.Escola de Química e Engenharia de AlimentosUniversidade Federal do Rio GrandeRio GrandeBrazil
  8. 8.Department of Mechanical Engineering and Center for Advanced Power SystemsFlorida State UniversityTallahasseeUSA

Personalised recommendations