Advertisement

Constructal Design of Wave Energy Converters

  • E. D. dos Santos
  • B. N. Machado
  • N. Lopes
  • J. A. Souza
  • P. R. F. Teixeira
  • M. N. Gomes
  • L. A. Isoldi
  • L. A. O. Rocha
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The augmentation of energy demand and the Kyoto agreement to reduce the greenhouse gas emissions have increased the interest for the study of renewable energy [1]. The growth and interest in expanding the wave energy sector are based on its potential estimated to be up to 10 TW. Depending on what is considered to be exploitable, this covers from 15 to 66 % of the total world energy consumption referred to 2006 [2–4]. According to ref. [5] the wave energy level is usually expressed as power per unit length (along the wave crest or along the shoreline direction). Typical values for “good” offshore locations (annual average) range between 20 and 70 kW/m and occur mostly in moderate to high latitudes. In this sense, the southern coasts of South America, Africa, and Australia are particularly attractive for wave energy exploitation.

Keywords

Mass Flow Rate Wave Energy Mooring Line Geometric Optimization Wave Tank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beels C, Troch P, De Visch K, Kofoed JP, De Backer G. Application of time-dependent mild slope equations for the simulation of wake effects in the lee of a farm of wave dragon wave energy converters. Renew Energ. 2010;35:1644–61.CrossRefGoogle Scholar
  2. 2.
    Engineering Committee on Oceanic Resources – Working Group on Wave Energy Conversion. Wave energy conversion. John Brooke, editor. Oxford: Elsevier; 2003Google Scholar
  3. 3.
    Cruz J, Gunnar M, Barstow S, Mollison D. Green energy and technology. In: Ocean wave energy. Joao Cruz, editor. Heidelberg: Springer; 2008Google Scholar
  4. 4.
    Margheritini L, Hansen AM, Frigaard P. A method for EIA scoping of wave energy converters – based on classification of the used technology. Environ Impact Asses. 2012;32:33–44.CrossRefGoogle Scholar
  5. 5.
    Falcão AFO. Wave energy utilization: a review of the technologies. Renew Sust Energ Rev. 2010;14:899–918.CrossRefGoogle Scholar
  6. 6.
    Cruz J, Sarmento A. Wave energy – introduction to technological, economical and environmental aspects (in portuguese). Portugal Instituto do Ambiente Alfragide; 2004Google Scholar
  7. 7.
    Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S, Pontes MT, Schild P, Sjöström BO, Sørensen HC, Thorpe T. Wave energy in Europe: current status and perspectives. Renew Sust Energ Rev. 2002;6:405–31.CrossRefGoogle Scholar
  8. 8.
    Zhang D, Li W, Lin Y. Wave energy in chine: current status and perspectives. Renew Energ. 2009;34:2089–92.CrossRefGoogle Scholar
  9. 9.
    Bahaj A. Generating electricity from the oceans. Renew Sust Energ Rev. 2011;15:3399–416.CrossRefGoogle Scholar
  10. 10.
    Zabihian F, Fung AS. Review of marine renewable energies: case study of Iran. Renew Sust Energ Rev. 2011;15:2461–74.CrossRefGoogle Scholar
  11. 11.
    Nielsen FG, Andersen M, Argyriadis K, Butterfield S, Fonseca N, Kuroiwa T, Le Boulluec M, Liao S-J, Turnock SR, Waegter J. Ocean wind and wave energy utilization. Southampton: ISSC; 2006Google Scholar
  12. 12.
    Twidell J, Weir T. Renewable energy resources. London: Taylor and Francis; 2006.Google Scholar
  13. 13.
    Falcao AFO, Justino PAP. OWC wave energy devices with air flow control. Ocean Eng. 1999;26:1275–95.CrossRefGoogle Scholar
  14. 14.
    Brito-Melo A, Gato LMC, Sarmento AJNA. Analysis of wells turbine design parameters by numerical simulation of the OWC performance. Ocean Eng. 2002;29:1463–77.CrossRefGoogle Scholar
  15. 15.
    Condenad JMP, Gato LMC. Numerical study of the air-flow in an oscillating water column wave energy converter. Renew Energ. 2008;33:2637–44.CrossRefGoogle Scholar
  16. 16.
    Jayashankar V, Anand S, Geetha T, Santhakumar S, Jagadeesh Kumar V, Ravindran M, Setoguchi T, Takao M, Toyota K, Nagata S. A twin unidirectional impulse turbine topology for OWC based wave energy plants. Renew Ener. 2009;34:692–8.CrossRefGoogle Scholar
  17. 17.
    Dizadji N, Sajadian SE. Modeling and optimization of the chamber of OWC system. Energy. 2011;36:2360–6.CrossRefGoogle Scholar
  18. 18.
    Kofoed JP, Frigaard P, Friis-Madsen E, Sørensen HC. Prototype testing of the wave energy converter wave dragon. Renew Energ. 2006;31:181–9.CrossRefGoogle Scholar
  19. 19.
    Tedd J, Kofoed JP. Measurements of overtopping flow time series on the wave dragon, wave energy converter. Renew Energ. 2009;34:711–17.CrossRefGoogle Scholar
  20. 20.
    Margheritini L, Vicinanza D, Frigaard P. SSG wave energy converter: design, reliability and hydraulic performance of an innovative overtopping device. Renew Energ. 2009;34:1371–80.CrossRefGoogle Scholar
  21. 21.
    Neves MG, Reis MT, Didier E. Comparison of wave overtopping at coastal structures calculated with AMAZON, COBRAS-UC and SPHysics. Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD; Lisbon, Portugal; 2010Google Scholar
  22. 22.
    Iahnke SLP. State of the art and development of an numerical simulation model for the overtopping principle (in Portuguese). MSc. thesis. Universidade Federal do Rio Grande; Rio Grande, Brasil; 2010Google Scholar
  23. 23.
    Van der Meer JW, Janssen JPFM. Wave run-up and wave overtopping at dikes. In: Kobayashi N, Dermirbilek, editors. Wave forces on inclined and vertical wall structures. ASCE, p.1–27. Also Delft Hydraulics, Publication. 487, 1994Google Scholar
  24. 24.
    Franco L, Gerloni M de, Van der Meer JW. Wave overtopping on vertical and composite breakwaters. In: Proceedings of the 24th International Conference on Coastal Engineering; 1995 Kobe, Japan. pp. 1030–44Google Scholar
  25. 25.
    Briganti R, Bellotti G, Franco L, De Rouck J, Geeraerts J. Field measurements of wave overtopping at the rubble mound breakwater of Rome–Ostia yacht harbour. Coast Eng. 2005;52:1155–74.CrossRefGoogle Scholar
  26. 26.
    Cáceres I, Stive MJF, Sánchez-Arcilla A, Trung LH. Quantification of changes in current intensities induced by wave overtopping around low-crested structures. Coast Eng. 2008;55:113–24.CrossRefGoogle Scholar
  27. 27.
    Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press; 2000.MATHGoogle Scholar
  28. 28.
    Bejan A, Lorente S. Design with constructal theory. New York: John Wiley and Sons Inc; 2008.CrossRefGoogle Scholar
  29. 29.
    Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys. 2006;100:041301.CrossRefGoogle Scholar
  30. 30.
    Beyene A, Peffley J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design. J Energ Eng-ASCE. 2009;135(4):112–8.CrossRefGoogle Scholar
  31. 31.
    Kim Y, Lorente S, Bejan A. Constructal multi-tube configuration for natural and forced convection in cross-flow. Int J Heat Mass Tran. 2010;53:5121–8.MATHCrossRefGoogle Scholar
  32. 32.
    Kim Y, Lorente S, Bejan A. Steam generator structure: continuous model and constructal design. Int J Energ Res. 2011;35:336–45.CrossRefGoogle Scholar
  33. 33.
    Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011;36:1087–96.CrossRefGoogle Scholar
  34. 34.
    Ling L, Yongcan C, Yuliang L. Volume of fluid (VOF) method for curved free surface water flow in shallow open channel. Department of hydraulic engineering, Tsinghua University, Beijing; 2001Google Scholar
  35. 35.
    Horko M. CFD Optimization of an oscillating water column energy converter. MSc thesis. School of mechanical engineering, The University of Western. Australia; 2007Google Scholar
  36. 36.
    FLUENT (version 6.3.16). ANSYS Inc; 2007Google Scholar
  37. 37.
    Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw Hill; 1980.MATHGoogle Scholar
  38. 38.
    Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics – the finite volume method. England: Longman; 1995.Google Scholar
  39. 39.
    Das M, Gomes N, Olinto CR, Rocha LAO, Souza JA, Isoldi LA. Computational modeling of a regular wave tank. Engenharia Térmica. 2009;8:44–50.Google Scholar
  40. 40.
    Das M, Gomes N. Computational modeling of na oscillating water column device to conversion of wave energy into electrical energy (in Portuguese). MSc thesis. Universidade Federal do Rio Grande; Brasil; 2010Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. D. dos Santos
    • 1
  • B. N. Machado
    • 1
  • N. Lopes
    • 1
  • J. A. Souza
    • 2
  • P. R. F. Teixeira
    • 1
  • M. N. Gomes
    • 3
  • L. A. Isoldi
    • 1
  • L. A. O. Rocha
    • 4
  1. 1.Escola de Engenharia (EE), Universidade Federal de Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Department of Mechanical Engineering and Center for Advanced Power SystemsFlorida State UniversityTallahasseeUSA
  3. 3.Departamento de Engenharia MecânicaCentro Politécnico, Universidade Federal do ParanáCuritibaBrazil
  4. 4.Departamento de Engenharia Mecânica (DEMEC)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations