Advertisement

Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling

  • L. A. Isoldi
  • M. V. Real
  • A. L. G. Correia
  • J. Vaz
  • E. D. dos Santos
  • L. A. O. RochaEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

It is possible to state that improving systems configuration for achieving better performance is the major goal in engineering. In the past, the scientific and technical knowledge combined with practice and intuition has guided engineers in the design of man-made systems for specific purposes. Soon after, the advent of the computational tools has permitted to simulate and evaluate flow architectures with many degrees of freedom. However, while system performance was analyzed and evaluated on a scientific basis, system design was kept at the level of art [1].

Keywords

Constructal Theory Perforated Plate Elliptical Hole Geometric Optimization Hole Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bejan A, Lorente S. The constructal law (La loi constructale). Int J Heat Mass Tran. 2006;49:445–5.CrossRefGoogle Scholar
  2. 2.
    Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Tran. 1997;40:799–816.zbMATHCrossRefGoogle Scholar
  3. 3.
    Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University Press; 2000.zbMATHGoogle Scholar
  4. 4.
    Bejan A, Lorente S. Design with constructal theory. Hoboken: Wiley; 2008.CrossRefGoogle Scholar
  5. 5.
    Ghodoossi L. Conceptual study on constructal theory. Energy conversion and management. 2004;45:1379–95.CrossRefGoogle Scholar
  6. 6.
    Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys. 2006;100:041301.CrossRefGoogle Scholar
  7. 7.
    Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011;36:1087–96.CrossRefGoogle Scholar
  8. 8.
    Beyene A, Peffley J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design. J Energ Eng-ASCE. 2009;135:112–8.CrossRefGoogle Scholar
  9. 9.
    Kang D-H, Lorente S, Bejan A. Constructal dendritic configuration for the radiation heating of a solid stream. J Appl Phys. 2010;107:114910.CrossRefGoogle Scholar
  10. 10.
    Kim Y, Lorente S, Bejan A. Constructal multi-tube configuration for natural and forced convection in cross-flow. Int J Heat Mass Tran. 2010;53:5121–8.zbMATHCrossRefGoogle Scholar
  11. 11.
    Kim Y, Lorente S, Bejan A. Steam generator structure: continuous model and constructal design. Int J Energ Res. 2011;35:336–45.CrossRefGoogle Scholar
  12. 12.
    Biserni C, Rocha LAO, Bejan A. Inverted fins: geometric optimization of the intrusion into a conducting wall. Int J Heat Mass Tran. 2004;47:2577–86.zbMATHCrossRefGoogle Scholar
  13. 13.
    Rocha LAO, Montanari GC, dos Santos ED, Rocha AS. Constructal design applied to the study of cavities into a solid conducting wall. Therm Eng. 2007;6:41–7.Google Scholar
  14. 14.
    Biserni C, Rocha LAO, Stanescu G, Lorenzini E. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Tran. 2007;50:2132–8.zbMATHCrossRefGoogle Scholar
  15. 15.
    Lorenzini G, Rocha LAO. Geometric optimization of T-Y-shaped cavity according to constructal design. Int J Heat Mass Tran. 2009;52:4683–8.zbMATHCrossRefGoogle Scholar
  16. 16.
    Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Tran. 2000;43:2101–15.zbMATHCrossRefGoogle Scholar
  17. 17.
    Lorenzini G, Rocha LAO. Constructal design of Y-shaped assembly of fins. J Heat Mass Tran. 2006;49:4552–7.zbMATHCrossRefGoogle Scholar
  18. 18.
    Xie ZH, Chen LG, Sun FR. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci China Technol Sci. 2010;53:2756–64.CrossRefGoogle Scholar
  19. 19.
    Lorenzini G, Rocha LAO. Constructal design of T-Y assembly of fins for an optimized heat removal. Int J Heat Mass Tran. 2009;52:1458–63.zbMATHCrossRefGoogle Scholar
  20. 20.
    Lorenzini G, Correa RL, dos Santos ED, Rocha LAO. Constructal design of complex assembly of fins. J Heat Tran-T ASME. 2011;133:1-1–7.Google Scholar
  21. 21.
    Bejan A, Lorente S. The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Tran. 2004;47:3203–14.zbMATHCrossRefGoogle Scholar
  22. 22.
    Bejan A. Advanced engineering thermodynamics. Hoboken: Wiley; 2006.Google Scholar
  23. 23.
    Reis AH. Constructal view of scaling laws of river basins. Geomorphology. 2006;78:201–6.CrossRefGoogle Scholar
  24. 24.
    Cetkin E, Lorente S, Bejan A. Natural constructal emergence of vascular design with turbulent flow. J Appl Phys. 2010;107:114901-1–9.CrossRefGoogle Scholar
  25. 25.
    Bello-Ochende T, Meyer JP, Ogunronbi OI. Constructal multiscale cylinders rotating in cross-flow. Int J Heat Mass Tran. 2011;54:2568–77.zbMATHCrossRefGoogle Scholar
  26. 26.
    Rocha LAO, Lorente S, Bejan A. Tree-shaped vascular wall designs for localized intense cooling. Int J Heat Mass Tran. 2009;52:4535–44.zbMATHCrossRefGoogle Scholar
  27. 27.
    Lorente S, Bejan A. Combined ‘flow and strength’ geometric optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Tran. 2002;45:3313–20.zbMATHCrossRefGoogle Scholar
  28. 28.
    Lorente S, Lee J, Bejan A. The “flow of stresses” concept: the analogy between mechanical strength and heat convection. Int J Heat Mass Tran. 2010;53:2963–8.zbMATHCrossRefGoogle Scholar
  29. 29.
    Cheng B, Zhao J. Strengthening of perforated plates under uniaxial compression: Buckling analysis. Thin Wall Struct. 2010;48:905–14.CrossRefGoogle Scholar
  30. 30.
    Young WC, Budynas RG. Roark’s formulas for stress and strain. New York: McGraw-Hill; 2002.Google Scholar
  31. 31.
    Beer FP, Johnston Jr ER, Dewolf JT, Mazurek D. Mechanics of materials. 5th ed. New York: McGraw-Hill; 2009.Google Scholar
  32. 32.
    She C, Guo W. Three-dimensional stress concentrations at elliptic holes in elastic isotropic plates subjected to tensile stress. Int J Fatigue. 2007;29:330–5.zbMATHCrossRefGoogle Scholar
  33. 33.
    Rezaeepazhand J, Jafari M. Stress analysis of perforated composite plates. Compos Struct. 2005;71:463–8.CrossRefGoogle Scholar
  34. 34.
    Rencis JJ, Terdalkar S. Stress concentrations and static failure for common elements used in finite element stress analysis. Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education; 2007. p. 1–17Google Scholar
  35. 35.
    Åkesson B. Plate buckling in bridges and other structures. New York: Taylor and Francis; 2007.Google Scholar
  36. 36.
    Silva VD. Mechanics and strength of materials. Berlin: Springer; 2006.Google Scholar
  37. 37.
    El-Sawy KM, Nazmy AS. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin Wall Struct. 2001;39:983–98.CrossRefGoogle Scholar
  38. 38.
    El-Sawy KM, Martini MI. Elastic stability of bi-axially loaded rectangular plates with a single circular hole. Thin Wall Struct. 2007;45:122–33.CrossRefGoogle Scholar
  39. 39.
    Moen CD, Schafer BW. Elastic buckling of thin plates with holes in compression or bending. Thin Wall Struct. 2009;47:1597–607.CrossRefGoogle Scholar
  40. 40.
    El-Sawy KM, Nazmy AS, Martini MI. Elasto-plastic buckling of perforated plates under uniaxial compression. Thin Wall Struct. 2004;42:1083–101.CrossRefGoogle Scholar
  41. 41.
    Paik JK. Ultimate strength of perforated steel plates under edge shear loading. Thin Wall Struct. 2007;45:301–6.CrossRefGoogle Scholar
  42. 42.
    Paik JK. Ultimate strength of perforated steel plates under axial compressive loading along short edges. Ships and Offshore Structures,2007;2:355–60Google Scholar
  43. 43.
    Paik JK. Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads. Thin Wall Struct. 2008;46:207–13.CrossRefGoogle Scholar
  44. 44.
    Maiorana E, Pellegrino C, Modena C. Linear buckling analysis of perforated plates subjected to localized symmetrical load. Eng Struct. 2008;30:3151–8.CrossRefGoogle Scholar
  45. 45.
    Maiorana E, Pellegrino C, Modena C. Non-linear analysis of perforated steel plates subjected to localized symmetrical load. J Constr Steel Res. 2009;65:959–64.CrossRefGoogle Scholar
  46. 46.
    Real M de V, Isoldi LA. Finite element buckling analysis of uniaxially loaded plates with holes. Proceedings of Southern Conference on Computational Modeling, Furg; 2010; Rio GrandeGoogle Scholar
  47. 47.
    ANSYS, User’s manual (version 10.0). Swanson analysis system Inc, Houston; 2005Google Scholar
  48. 48.
    Madenci E, Guven I. The finite element method and applications in engineering using ANSYS ®. Ed., Springer; 2006Google Scholar
  49. 49.
    Przemieniecki JS. Theory of matrix structural analysis. Ed. Dover Publications; 1985Google Scholar
  50. 50.
    Wang CM, Wang CY, Reddy JN. Exact solutions for buckling of structural members. Florida: CRC; 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. A. Isoldi
    • 1
  • M. V. Real
    • 1
  • A. L. G. Correia
    • 1
  • J. Vaz
    • 1
  • E. D. dos Santos
    • 1
  • L. A. O. Rocha
    • 2
    Email author
  1. 1.Universidade Federal de Rio Grande (FURG), Escola de Engenharia (EE)Rio GrandeBrazil
  2. 2.Departamento de Engenharia Mecânica (DEMEC)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations