Advertisement

Constructal Design of Rectangular Conjugate Cooling Channels

  • T. Bello-OchendeEmail author
  • O. T. Olakoyejo
  • J. P. Meyer
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The new trend in modern heat transfer for thermal performance is shape and geometric optimization. Constructal theory and design [1, 2], ideally, have been adopted as an optimisation technique for the development of a procedure that is sufficiently allocating and optimising a fixed global space constraint using physical law.

Keywords

Design Variable Thermal Resistance Hydraulic Diameter Constructal Theory Cool Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The funding obtained from the NRF, TESP, Stellenbosch University/University of Pretoria, SANERI/SANEDI, CSIR, EEDSM Hub and NAC is acknowledged and duly appreciated.

References

  1. 1.
    Bejan A. Advanced engineering thermodynamics. 2nd ed. New York: Wiley; 1997.Google Scholar
  2. 2.
    Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University Press; 2000.zbMATHGoogle Scholar
  3. 3.
    Bejan A, Sciubba E. The optimal spacing of parallel plates cooled by forced convection. Int J Heat Mass Tran. 1992;35:3259–64.CrossRefGoogle Scholar
  4. 4.
    Bejan A, Lorente S. Design with constructal theory. Hoboken: Wiley; 2008.CrossRefGoogle Scholar
  5. 5.
    Bello-Ochende T, Bejan A. Fitting the duct to the “body” of the convective flow. Int J Heat Mass Tran. 2003;46:1693–701.zbMATHCrossRefGoogle Scholar
  6. 6.
    Wang H, Dai W, Bejan A. Optimal temperature distribution in a 3D triple-layered skin structure embedded with artery and vein vasculature and induced by electromagnetic radiation. Int J Heat Mass Tran. 2007;50:1843–54.zbMATHCrossRefGoogle Scholar
  7. 7.
    Bejan A, Badescu V, De Vos A. Constructal theory of economics structure generation in space and time. Energ Convers Manage. 2000;4:1429–51.CrossRefGoogle Scholar
  8. 8.
    Bejan A, Badescu V, De Vos A. Constructal theory of economics. Appl Energ. 2000;67:37–60.CrossRefGoogle Scholar
  9. 9.
    Bejan A. Optimal internal structure of volumes cooled by single phase forced and natural convection. J Electron Packaging. 2003;125:200–7.CrossRefGoogle Scholar
  10. 10.
    Bejan A. Why university rankings do not change: education as a natural hierarchical flow architecture. Int J Des Nat Ecodyn. 2007;2(4):319–27.Google Scholar
  11. 11.
    Bejan A. Two hierarchies in science: the free flow of ideas and the academy. Int J Des Nat Ecodyn. 2009;4:86–94.Google Scholar
  12. 12.
    Weinerth G. The constructal analysis of warfare. Int J Des Nat Ecodyn. 2010;5(3):268–76.CrossRefGoogle Scholar
  13. 13.
    Meyer JP. Constructal law in technology, thermofluid and Energy Systems, and in design education. Phys Life Rev. 2011;8(3):247–8.CrossRefGoogle Scholar
  14. 14.
    Bejan A, Lorente S. The constructal law and the evolution of design in nature. Phys Life Rev. 2011;8(3):209–40.CrossRefGoogle Scholar
  15. 15.
    Bello-Ochende T, Meyer JP, Bejan A. Constructal ducts with wrinkled entrances. Int J Heat Mass Trans. 2009;52:3628–33.zbMATHCrossRefGoogle Scholar
  16. 16.
    Muzychka YS. Constructal design of forced convection cooled micro-channel heat sinks and exchangers. Int J Heat Mass Trans. 2005;48(15):3119–24.zbMATHCrossRefGoogle Scholar
  17. 17.
    Rocha LAO, Lorenzini E, BiserniGeometric C. Optimization of shapes on the basis of Bejan’s constructal theory. Int Commun Heat Mass. 2005;32:1281–8.CrossRefGoogle Scholar
  18. 18.
    Kim SW, Lorente S, Bejan A. Vascularised materials with heating from one side and coolant forced from the other side. Int J Heat Mass Trans. 2007;50:3498–506.zbMATHCrossRefGoogle Scholar
  19. 19.
    Salimpour MR, Sharifhasan M, Shirani E. Constructal optimization of the geometry of an array of micro-channels. Int Commun Heat Mass. 2010;38:93–9.CrossRefGoogle Scholar
  20. 20.
    Olakoyejo OT, Bello-Ochende T, Meyer JP. Geometric optimisation of forced convection in a vascularised material. Proceedings of the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics; 2011; Pointe Aux Piments, Mauritius. p. 666–74Google Scholar
  21. 21.
    Reis AH. Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Appl Mech Rev. 2006;59(5):269–82.CrossRefGoogle Scholar
  22. 22.
    Fan Y, Luo L. Recent applications of advances in microchannel heat exchangers and multi-scale design optimization. Heat Transfer Eng. 2008;29(5):461–74.CrossRefGoogle Scholar
  23. 23.
    da Silva AK, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a plate with laminar forced convection. Int J Heat Mass Trans. 2004;47(11–12):2139–48.zbMATHCrossRefGoogle Scholar
  24. 24.
    Bello-Ochende T, Liebenberg L, Meyer JP. Constructal cooling channels for micro-channel heat sinks. Int J Heat Mass Trans. 2007;50(21–22):4141–50.zbMATHCrossRefGoogle Scholar
  25. 25.
    Rocha LAO, Lorenzini E, Biserni C, Cho Y. Constructal design of a cavity cooled by convection. Int J Des Nat Ecodyn. 2010;5(3):212–20.CrossRefGoogle Scholar
  26. 26.
    Biserni C, Rocha LAO, Stanescu G, Lorenzini E. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Trans. 2007;5:2132–8.CrossRefGoogle Scholar
  27. 27.
    Olakoyejo OT, Bello-Ochende T, Meyer JP. Geometric optimisation of forced convection in cooling channels with internal heat generation. Proceedings of the 14th International Heat Transfer Conference; 2010 Washington DC, USA. Paper: IHTC14-22230Google Scholar
  28. 28.
    Chu RC. “Thermal management roadmap cooling electronic products from handheld device to supercomputers,”. Proceedings of the MIT Rohsenow Symposium; 2002 Cambridge, MAGoogle Scholar
  29. 29.
    SEMATECH. The National Technology Roadmap For Semiconductors: Technology Need SEMATECH, Austin, TX; 1997Google Scholar
  30. 30.
    Bhattacharjee S, Grosshandler WL. The formation of wall jet near a high temperature wall under microgravity environment. ASME HTD. 1998;96:711–6.Google Scholar
  31. 31.
    Petrescu S. Comments on the optimal spacing of parallel plates cooled by forced convection. Int J Heat Mass Trans. 1994;37:1283.CrossRefGoogle Scholar
  32. 32.
    Fluent Inc.. Fluent version 6 manuals. Centerra resource park, 10 Cavendish Court, Lebanon, New Hampshire, USA, (http://www.fluent.com). 2001
  33. 33.
    Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980.zbMATHGoogle Scholar
  34. 34.
    Fluent Inc. Gambit version 6 manuals. Centerra resource park, 10 Cavendish court, Lebanon, New Hampshire, USA. (http://www.fluent.com). 2001
  35. 35.
    The MathWorks, Inc. MATLAB and Simulink Release notes for R2008a. 3 Apple Hill Drive, Natick, MA. (http://www.mathworks.com), 2008
  36. 36.
    White FM. Viscous fluid flow. 2nd ed. Singapore: McGraw-Hill; 1991.Google Scholar
  37. 37.
    Snyman JA, Hay AM. The DYNAMIC-Q optimisation method: an alternative to SQP? Comput Math Appl. 2002;44:1589–98.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Snyman JA. Practical mathematical optimisation: an introduction to basic optimisation theory and classical and new gradient-based algorithms. New York: Springer; 2005.Google Scholar
  39. 39.
    Bello-Ochende T, Meyer JP, Ighalo FU. Combined numerical optimization and constructal theory for the design of microchannel heat sinks. Numer Heat Trans A. 2010;58:882–99.CrossRefGoogle Scholar
  40. 40.
    Morris RM, Synyman JA, Meyer JP. Jets in crossflow mixing analysis using computational fluid dynamics and mathematical optimization. AIAA J Propulsion Power. 2007;23:618–28.CrossRefGoogle Scholar
  41. 41.
    Motsamai OS, Synyman JA, Meyer JP. Optimisation of gas turbine combustor mixing for improved exit temperature profile. Heat Transfer Eng. 2010;31:402–18.CrossRefGoogle Scholar
  42. 42.
    Olakoyejo OT, Bello-Ochende T, Meyer JP. Mathematical optimisation of laminar forced convection heat transfer through a vascularised solid with square channels. Int J Heat Mass Trans. 2012;55(9–10):2402–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. Bello-Ochende
    • 1
    Email author
  • O. T. Olakoyejo
    • 1
  • J. P. Meyer
    • 1
  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations