Skip to main content

Helicases at the Replication Fork

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 767))

Abstract

Helicases are fundamental components of all replication complexes since unwinding of the double-stranded template to generate single-stranded DNA is essential to direct DNA synthesis by polymerases. However, helicases are also required in many other steps of DNA replication. Replicative helicases not only unwind the template DNA but also play key roles in regulating priming of DNA synthesis and coordination of leading and lagging strand DNA polymerases. Accessory helicases also aid replicative helicases in unwinding of the template strands in the presence of proteins bound to the DNA, minimising the risks posed by nucleoprotein complexes to continued fork movement. Helicases also play critical roles in Okazaki fragment processing in eukaryotes and may also be needed to minimise topological problems when replication forks converge. Thus fork movement, coordination of DNA synthesis, lagging strand maturation and termination of replication all depend on helicases. Moreover, if disaster strikes and a replication fork breaks down then reloading of the replication machinery is effected by helicases, at least in bacteria. This chapter describes how helicases function in these multiple steps at the fork and how DNA unwinding is coordinated with other catalytic processes to ensure efficient, high fidelity duplication of the genetic material in all organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.

    Article  CAS  PubMed  Google Scholar 

  2. Patel SS, Pandey M, Nandakumar D. Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol. 2011;15:595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mok M, Marians KJ. The Escherichia coli preprimosome and DnaB helicase can form replication forks that move at the same rate. J Biol Chem. 1987;262:16644–54.

    Article  CAS  PubMed  Google Scholar 

  4. Tanner NA, Loparo JJ, Hamdan SM, Jergic S, Dixon NE, van Oijen AM. Real-time single-molecule observation of rolling-circle DNA replication. Nucleic Acids Res. 2009;37:e27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yao NY, Georgescu RE, Finkelstein J, O’Donnell ME. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci USA. 2009;106:13236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA ­unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid ­quench-flow method. J Mol Biol. 2004;343:83–99.

    Article  CAS  PubMed  Google Scholar 

  7. Singleton MR, Sawaya MR, Ellenberger T, Wigley DB. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell. 2000;101:589–600.

    Article  CAS  PubMed  Google Scholar 

  8. Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.

    Article  CAS  PubMed  Google Scholar 

  9. Korhonen JA, Gaspari M, Falkenberg M. TWINKLE has 5′ -> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem. 2003;278:48627–32.

    Article  CAS  PubMed  Google Scholar 

  10. Hacker KJ, Johnson KA. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry. 1997;36:14080–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ahnert P, Patel SS. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J Biol Chem. 1997;272:32267–73.

    Article  CAS  PubMed  Google Scholar 

  12. Jezewska MJ, Rajendran S, Bujalowska D, Bujalowski W. Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB Helicase? Fluorescence energy transfer studies. J Biol Chem. 1998;273:10515–29.

    Article  CAS  PubMed  Google Scholar 

  13. Jezewska MJ, Rajendran S, Bujalowski W. Complex of Escherichia coli primary replicative helicase DnaB protein with a replication fork: recognition and structure. Biochemistry. 1998;37:3116–36.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan DL. The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol. 2000;301:285–99.

    Article  CAS  PubMed  Google Scholar 

  15. Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J Mol Biol. 2004;343:101–14.

    Article  CAS  PubMed  Google Scholar 

  16. Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA. 2000;97:1530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA. 2006;103:10236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9:27–43.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci. 2005;30:437–44.

    Article  CAS  PubMed  Google Scholar 

  20. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evrin C, Clarke P, Zech J, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA. 2009;106:20240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan DL, Davey MJ, O’Donnell M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem. 2003;278:49171–82.

    Article  CAS  PubMed  Google Scholar 

  23. Fu YV, Yardimci H, Long DT, et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell. 2011;146:931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graham BW, Schauer GD, Leuba SH, Trakselis MA. Steric exclusion and wrapping of the excluded DNA strand occurs along discrete external binding paths during MCM helicase unwinding. Nucleic Acids Res. 2011;39:6585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaplan DL, O’Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell. 2002;10:647–57.

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan DL, O’Donnell M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol Cell. 2004;15:453–65.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta MK, Atkinson J, McGlynn P. DNA structure specificity conferred on a replicative helicase by its loader. J Biol Chem. 2010;285:979–87.

    Article  CAS  PubMed  Google Scholar 

  28. Soultanas P. Loading mechanisms of ring helicases at replication origins. Mol Microbiol. 2012;84(1):6–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaguni JM. DnaA: controlling the initiation of bacterial DNA replication and more. Annu Rev Microbiol. 2006;60:351–75.

    Article  CAS  PubMed  Google Scholar 

  30. Mott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol. 2007;5:343–54.

    Article  CAS  PubMed  Google Scholar 

  31. Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol. 2010;8:163–70.

    Article  CAS  PubMed  Google Scholar 

  32. Speck C, Messer W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J. 2001;20:1469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sutton MD, Carr KM, Vicente M, Kaguni JM. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem. 1998;273:34255–62.

    Article  CAS  PubMed  Google Scholar 

  34. Duderstadt KE, Chuang K, Berger JM. DNA stretching by bacterial initiators promotes replication origin opening. Nature. 2011;478:209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bramhill D, Kornberg A. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell. 1988;52:743–55.

    Article  CAS  PubMed  Google Scholar 

  36. Kowalski D, Eddy MJ. The DNA unwinding element: a novel, cis-acting component that facilitates opening of the Escherichia coli replication origin. EMBO J. 1989;8:4335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soni RK, Mehra P, Mukhopadhyay G, Dhar SK. Helicobacter pylori DnaB helicase can bypass E. coli DnaC function in vivo. Biochem J. 2005;389:541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang L, Davey MJ, O’Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol Cell. 1999;4:541–53.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315.

    Article  CAS  PubMed  Google Scholar 

  40. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16:967–78.

    Article  CAS  PubMed  Google Scholar 

  41. Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21:771–7.

    Article  CAS  PubMed  Google Scholar 

  42. Gambus A, Jones RC, Sanchez-Diaz A, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8:358–66.

    Article  CAS  PubMed  Google Scholar 

  43. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24:1208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell. 2010;40:834–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005;19:1905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell. 2006;21:581–7.

    Article  CAS  PubMed  Google Scholar 

  48. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31:287–93.

    Article  CAS  PubMed  Google Scholar 

  49. Costa A, Ilves I, Tamberg N, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S, Dallmann HG, McHenry CS, Marians KJ. Coupling of a replicative polymerase and helicase: a t-DnaB interaction mediates rapid replication fork movement. Cell. 1996;84:643–50.

    Article  CAS  PubMed  Google Scholar 

  51. Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J Biol Chem. 2001;276:4441–6.

    Article  CAS  PubMed  Google Scholar 

  52. Gao D, McHenry CS. t binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged t to determine candidate domains and to assign domain V as the a binding domain. J Biol Chem. 2001;276:4433–40.

    Article  CAS  PubMed  Google Scholar 

  53. Notarnicola SM, Mulcahy HL, Lee J, Richardson CC. The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J Biol Chem. 1997;272:18425–33.

    Article  CAS  PubMed  Google Scholar 

  54. Delagoutte E, von Hippel PH. Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry. 2001;40:4459–77.

    Article  CAS  PubMed  Google Scholar 

  55. Lee SJ, Marintcheva B, Hamdan SM, Richardson CC. The C-terminal residues of bacteriophage T7 gene 4 helicase-primase coordinate helicase and DNA polymerase activities. J Biol Chem. 2006;281:25841–9.

    Article  CAS  PubMed  Google Scholar 

  56. Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature. 2005;435:370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishmael FT, Trakselis MA, Benkovic SJ. Protein-protein interactions in the bacteriophage T4 replisome. The leading strand holoenzyme is physically linked to the lagging strand holoenzyme and the primosome. J Biol Chem. 2003;278:3145–52.

    Article  CAS  PubMed  Google Scholar 

  58. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23:2423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hamdan SM, Johnson DE, Tanner NA, et al. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol Cell. 2007;27:539–49.

    Article  CAS  PubMed  Google Scholar 

  60. Tanner NA, Hamdan SM, Jergic S, Schaeffer PM, Dixon NE, van Oijen AM. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol. 2008;15:170–6.

    Article  CAS  PubMed  Google Scholar 

  61. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17:1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon), and GINS in budding yeast. Genes Dev. 2010;24:602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun B, Johnson DS, Patel G, et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature. 2011;478:132–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Studwell-Vaughan PS, O’Donnell M. Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem. 1991;266:19833–41.

    Article  CAS  PubMed  Google Scholar 

  65. McInerney P, Johnson A, Katz F, O’Donnell M. Characterization of a triple DNA polymerase replisome. Mol Cell. 2007;27:527–38.

    Article  CAS  PubMed  Google Scholar 

  66. Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010;328:498–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeeles JT, Marians KJ. The Escherichia coli replisome is inherently DNA damage tolerant. Science. 2011;334:235–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu YB, Ratnakar PV, Mohanty BK, Bastia D. Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc Natl Acad Sci USA. 1996;93:12902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Biswas EE, Biswas SB. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochemistry. 1999;38:10919–28.

    Article  CAS  PubMed  Google Scholar 

  70. Oakley AJ, Loscha KV, Schaeffer PM, et al. Crystal and solution structures of the helicase-binding domain of Escherichia coli primase. J Biol Chem. 2005;280:11495–504.

    Article  CAS  PubMed  Google Scholar 

  71. Bird LE, Pan H, Soultanas P, Wigley DB. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry. 2000;39:171–82.

    Article  CAS  PubMed  Google Scholar 

  72. Thirlway J, Turner IJ, Gibson CT, et al. DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Res. 2004;32:2977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Norcum MT, Warrington JA, Spiering MM, Ishmael FT, Trakselis MA, Benkovic SJ. Architecture of the bacteriophage T4 primosome: electron microscopy studies of helicase (gp41) and primase (gp61). Proc Natl Acad Sci USA. 2005;102:3623–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Toth EA, Li Y, Sawaya MR, Cheng Y, Ellenberger T. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol Cell. 2003;12:1113–23.

    Article  CAS  PubMed  Google Scholar 

  75. Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD. GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep. 2006;7:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Falco M, Ferrari E, De Felice M, Rossi M, Hubscher U, Pisani FM. The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep. 2007;8:99–103.

    Article  PubMed  CAS  Google Scholar 

  77. Valentine AM, Ishmael FT, Shier VK, Benkovic SJ. A zinc ribbon protein in DNA replication: primer synthesis and macromolecular interactions by the bacteriophage T4 primase. Biochemistry. 2001;40:15074–85.

    Article  CAS  PubMed  Google Scholar 

  78. Corn JE, Berger JM. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res. 2006;34(15):4082–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science. 2007;318:459–63.

    Article  CAS  PubMed  Google Scholar 

  80. Bhattacharyya S, Griep MA. DnaB helicase affects the initiation specificity of Escherichia coli primase on single-stranded DNA templates. Biochemistry. 2000;39:745–52.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson SK, Bhattacharyya S, Griep MA. DnaB helicase stimulates primer synthesis activity on short oligonucleotide templates. Biochemistry. 2000;39:736–44.

    Article  CAS  PubMed  Google Scholar 

  82. Corn JE, Pease PJ, Hura GL, Berger JM. Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell. 2005;20:391–401.

    Article  CAS  PubMed  Google Scholar 

  83. Yancey-Wrona JE, Matson SW. Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. Nucleic Acids Res. 1992;20:6713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mackintosh SG, Raney KD. DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res. 2006;34:4154–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell. 2005;19:247–58.

    Article  CAS  PubMed  Google Scholar 

  86. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009;34:722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9:204–17.

    Article  CAS  PubMed  Google Scholar 

  88. Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 2009;37:3475–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blow JJ, Ge XQ. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep. 2009;10:406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kawabata T, Luebben SW, Yamaguchi S, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jacome A, Fernandez-Capetillo O. Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep. 2011;12:1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klein IA, Resch W, Jankovic M, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011;147:95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chiarle R, Zhang Y, Frock RL, et al. Genome-wide translocation sequencing reveals ­mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147:107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Byrd AK, Raney KD. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat Struct Mol Biol. 2004;11:531–8.

    Article  CAS  PubMed  Google Scholar 

  95. Bonne-Andrea C, Wong ML, Alberts BM. In vitro replication through nucleosomes without histone displacement. Nature. 1990;343:719–26.

    Article  CAS  PubMed  Google Scholar 

  96. Guy CP, Atkinson J, Gupta MK, et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell. 2009;36:654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boubakri H, de Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 2010;29(1):145–57.

    Article  CAS  PubMed  Google Scholar 

  98. Atkinson J, Gupta MK, Rudolph CJ, Bell H, Lloyd RG, McGlynn P. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res. 2011;39:949–57.

    Article  CAS  PubMed  Google Scholar 

  99. Atkinson J, Gupta MK, McGlynn P. Interaction of Rep and DnaB on DNA. Nucleic Acids Res. 2011;39:1351–9.

    Article  CAS  PubMed  Google Scholar 

  100. Uzest M, Ehrlich SD, Michel B. Lethality of rep recB and rep recC double mutants of Escherichia coli. Mol Microbiol. 1995;17:1177–88.

    Article  CAS  PubMed  Google Scholar 

  101. Seigneur M, Bidnenko V, Ehrlich SD, Michel B. RuvAB acts at arrested replication forks. Cell. 1998;95:419–30.

    Article  CAS  PubMed  Google Scholar 

  102. Lane HE, Denhardt DT. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J Mol Biol. 1975;97:99–112.

    Article  CAS  PubMed  Google Scholar 

  103. Smith KR, Yancey JE, Matson SW. Identification and purification of a protein that stimulates the helicase activity of the Escherichia coli Rep protein. J Biol Chem. 1989;264:6119–26.

    Article  CAS  PubMed  Google Scholar 

  104. Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 2010;6:e1001238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 2002;16:1383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell. 2003;12:1525–36.

    Article  CAS  PubMed  Google Scholar 

  107. Keil RL, McWilliams AD. A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics. 1993;135:711–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmidt KH, Kolodner RD. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol. 2004;24:3213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol. 2004;24:3198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 2006;20:3104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schmidt KH, Derry KL, Kolodner RD. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem. 2002;277:45331–7.

    Article  CAS  PubMed  Google Scholar 

  112. Moolenaar GF, Moorman C, Goosen N. Role of the Escherichia coli nucleotide excision repair proteins in DNA replication. J Bacteriol. 2000;182:5706–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem. 2009;284:9612–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 2004;18:2764–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature. 2001;412:456–61.

    Article  CAS  PubMed  Google Scholar 

  116. Bae SH, Seo YS. Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem. 2000;275:38022–31.

    Article  CAS  PubMed  Google Scholar 

  117. Kao HI, Campbell JL, Bambara RA. Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J Biol Chem. 2004;279:50840–9.

    Article  CAS  PubMed  Google Scholar 

  118. Balakrishnan L, Polaczek P, Pokharel S, Campbell JL, Bambara RA. Dna2 exhibits a unique strand end-dependent helicase function. J Biol Chem. 2010;285:38861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J Biol Chem. 2004;279:15014–24.

    Article  CAS  PubMed  Google Scholar 

  120. Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol. 2006;26:2490–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lahaye A, Stahl H, Thines-Sempoux D, Foury F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 1991;10:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bochman ML, Sabouri N, Zakian VA. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst). 2010;9:237–49.

    Article  CAS  Google Scholar 

  123. Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem. 2008;283:27483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pike JE, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem. 2009;284:25170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pike JE, Henry RA, Burgers PM, Campbell JL, Bambara RA. An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J Biol Chem. 2010;285:41712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ribeyre C, Lopes J, Boule JB, et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sanders CM. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J. 2010;430:119–28.

    Article  CAS  PubMed  Google Scholar 

  128. Paeschke K, Capra JA, Zakian VA. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 2011;145:678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Minden JS, Marians KJ. Escherichia coli topoisomerase I can segregate replicating pBR322 daughter DNA molecules in vitro. J Biol Chem. 1986;261:11906–17.

    Article  CAS  PubMed  Google Scholar 

  130. Rothstein R, Gangloff S. Hyper-recombination and Bloom’s syndrome: microbes again provide clues about cancer. Genome Res. 1995;5:421–6.

    Article  CAS  PubMed  Google Scholar 

  131. Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell. 2008;30:779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nurse P, Levine C, Hassing H, Marians KJ. Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem. 2003;278:8653–60.

    Article  CAS  PubMed  Google Scholar 

  133. Butland G, Peregrin-Alvarez JM, Li J, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005;433:531–7.

    Article  CAS  PubMed  Google Scholar 

  134. Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 2007;282:19247–58.

    Article  CAS  PubMed  Google Scholar 

  135. Nadal M. Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie. 2007;89:447–55.

    Article  CAS  PubMed  Google Scholar 

  136. Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007;71:13–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Higuchi K, Katayama T, Iwai S, Hidaka M, Horiuchi T, Maki H. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes Cells. 2003;8:437–49.

    Article  CAS  PubMed  Google Scholar 

  138. Pagès V, Fuchs RP. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science. 2003;300:1300–3.

    Article  PubMed  CAS  Google Scholar 

  139. McInerney P, O’Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem. 2004;279:21543–51.

    Article  CAS  PubMed  Google Scholar 

  140. Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P. Co-directional replication-transcription conflicts lead to replication restart. Nature. 2011;470:554–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marians KJ, Hiasa H, Kim DR, McHenry CS. Role of the core DNA polymerase III subunits at the replication fork. α is the only subunit required for processive replication. J Biol Chem. 1998;273:2452–7.

    Article  CAS  PubMed  Google Scholar 

  142. McGlynn P, Guy CP. Replication forks blocked by protein-DNA complexes have limited stability in vitro. J Mol Biol. 2008;381:249–55.

    Article  CAS  PubMed  Google Scholar 

  143. Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. 2006;7:932–43.

    Article  CAS  PubMed  Google Scholar 

  144. Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010;11:683–7.

    Article  CAS  PubMed  Google Scholar 

  145. Llorente B, Smith CE, Symington LS. Break-induced replication: what is it and what is it for? Cell Cycle. 2008;7:859–64.

    Article  CAS  PubMed  Google Scholar 

  146. Hashimoto Y, Puddu F, Costanzo V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol. 2012;19:17–24.

    Article  CAS  Google Scholar 

  147. Jones JM, Nakai H. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol. 1999;289:503–16.

    Article  CAS  PubMed  Google Scholar 

  148. Liu J, Marians KJ. PriA-directed assembly of a primosome on D loop DNA. J Biol Chem. 1999;274:25033–41.

    Article  CAS  PubMed  Google Scholar 

  149. Lee MS, Marians KJ. Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc Natl Acad Sci USA. 1987;84:8345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lasken RS, Kornberg A. The primosomal protein n′ of Escherichia coli is a DNA helicase. J Biol Chem. 1988;263:5512–8.

    Article  CAS  PubMed  Google Scholar 

  151. McGlynn P, Al-Deib AA, Liu J, Marians KJ, Lloyd RG. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol. 1997;270:212–21.

    Article  CAS  PubMed  Google Scholar 

  152. Nurse P, Liu J, Marians KJ. Two modes of PriA binding to DNA. J Biol Chem. 1999;274:25026–32.

    Article  CAS  PubMed  Google Scholar 

  153. Sasaki K, Ose T, Okamoto N, et al. Structural basis of the 3′-end recognition of a leading strand in stalled replication forks by PriA. EMBO J. 2007;26:2584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tanaka T, Mizukoshi T, Sasaki K, Kohda D, Masai H. Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis. J Biol Chem. 2007;282:19917–27.

    Article  CAS  PubMed  Google Scholar 

  155. Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell. 2002;9:241–51.

    Article  CAS  PubMed  Google Scholar 

  156. Cadman CJ, McGlynn P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 2004;32:6378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lecointe F, Serena C, Velten M, et al. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J. 2007;26:4239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ng JY, Marians KJ. The ordered assembly of the fX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J Biol Chem. 1996;271:15642–8.

    Article  CAS  PubMed  Google Scholar 

  159. Liu J, Nurse P, Marians KJ. The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J Biol Chem. 1996;271:15656–61.

    Article  CAS  PubMed  Google Scholar 

  160. Lopper M, Holton JM, Keck JL. Crystal structure of PriB, a component of the Escherichia coli replication restart primosome. Structure (Camb). 2004;12:1967–75.

    Article  CAS  Google Scholar 

  161. Cadman CJ, Lopper M, Moon PB, Keck JL, McGlynn P. PriB stimulates PriA helicase via an interaction with single-stranded DNA. J Biol Chem. 2005;280:39693–700.

    Article  CAS  PubMed  Google Scholar 

  162. Lopper M, Boonsombat R, Sandler SJ, Keck JL. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 2007;26:781–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Heller RC, Marians KJ. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell. 2005;17:733–43.

    Article  CAS  PubMed  Google Scholar 

  164. Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature. 2006;439:557–62.

    Article  CAS  PubMed  Google Scholar 

  165. Heller RC, Marians KJ. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J Biol Chem. 2005;280:34143–51.

    Article  CAS  PubMed  Google Scholar 

  166. Sandler SJ, Marians KJ. Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol. 2000;182:9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sandler SJ, McCool JD, Do TT, Johansen RU. PriA mutations that affect PriA-PriC function during replication restart. Mol Microbiol. 2001;41:697–704.

    Article  CAS  PubMed  Google Scholar 

  168. Heller RC, Marians KJ. Non-replicative helicases at the replication fork. DNA Repair (Amst). 2007;6:945–52.

    Article  CAS  Google Scholar 

  169. Sandler SJ. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics. 2000;155:487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kogoma T, Cadwell GW, Barnard KG, Asai T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol. 1996;178:1258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sandler SJ, Marians KJ, Zavitz KH, Coutu J, Parent MA, Clark AJ. dnaC mutations suppress defects in DNA replication- and recombination- associated functions in priB and priC double mutants in Escherichia coli K-12. Mol Microbiol. 1999;34:91–101.

    Article  CAS  PubMed  Google Scholar 

  172. Nurse P, Zavitz KH, Marians KJ. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol. 1991;173:6686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lee EH, Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein. Proc Natl Acad Sci USA. 1991;88:3029–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rocha EP, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 2005;1:e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Liu J, Xu L, Sandler SJ, Marians KJ. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc Natl Acad Sci USA. 1999;96:3552–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zavitz KH, Marians KJ. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J Biol Chem. 1992;267:6933–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter McGlynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McGlynn, P. (2013). Helicases at the Replication Fork. In: Spies, M. (eds) DNA Helicases and DNA Motor Proteins. Advances in Experimental Medicine and Biology, vol 767. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5037-5_5

Download citation

Publish with us

Policies and ethics