Structure and Mechanism of Hexameric Helicases

  • Barbara Medagli
  • Silvia OnestiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)


Hexameric helicases are responsible for many biological processes, ranging from DNA replication in various life domains to DNA repair, transcriptional regulation and RNA metabolism, and encompass superfamilies 3–6 (SF3–6).

To harness the chemical energy from ATP hydrolysis for mechanical work, hexameric helicases have a conserved core engine, called ASCE, that belongs to a subdivision of the P-loop NTPases. Some of the ring helicases (SF4 and SF5) use a variant of ASCE known as RecA-like, while some (SF3 and SF6) use another variant known as AAA+ fold. The NTP-binding sites are located at the interface between monomers and include amino-acid residues coming from neighbouring subunits, providing a mean for small structural changes within the ATP-binding site to be amplified into large inter-subunit movement.

The ring structure has a central channel which encircles the nucleic acid. The topological link between the protein and the nucleic acid substrate increases the stability and processivity of the enzyme. This is probably the reason why within cellular systems the critical step of unwinding dsDNA ahead of the replication fork seems to be almost invariably carried out by a toroidal helicase, whether in bacteria, archaea or eukaryotes, as well as in some viruses.

Over the last few years, a large number of biochemical, biophysical and structural data have thrown new light onto the architecture and function of these remarkable machines. Although the evidence is still limited to a couple of systems, biochemical and structural results suggest that motors based on RecA and AAA+ folds have converged on similar mechanisms to couple ATP-driven conformational changes to movement along nucleic acids.


Nucleotide State Hexameric Ring Conserve Arginine Residue ASCE Group Spiral Staircase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature. 2006;442:270–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomsen ND, Berger JM. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell. 2009;139:523–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Pape T, Meka H, Chen S, Vicentini G, van Heel M, Onesti S. Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep. 2003;4:1079–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science. 2007;318:459–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res. 2009;37:804–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature. 2003;423:512–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci. 2005;30:437–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol. 2008;18:243–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell. 2011;146:931–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Rabhi M, Tuma R, Boudvillain M. RNA remodeling by hexameric RNA helicases. RNA Biol. 2010;7:655–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 2011;36:19–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol. 2003;333:781–815.PubMedCrossRefGoogle Scholar
  14. 14.
    Iyer LM, Makarova KS, Koonin EV, Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 2004;32:5260–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 2006;35:93–114.PubMedCrossRefGoogle Scholar
  16. 16.
    Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994;370:621–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Boyer PD. The ATP synthase—a splendid molecular machine. Annu Rev Biochem. 1997;66:717–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Leslie AG, Abrahams JP, Braig K, Lutter R, Menz RI, Orriss GL, et al. The structure of bovine mitochondrial F1-ATPase: an example of rotary catalysis. Biochem Soc Trans. 1999;27:37–42.PubMedGoogle Scholar
  19. 19.
    Ogura T, Wilkinson AJ. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells. 2001;6:575–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang X, Wigley DB. The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol. 2008;15:1223–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol. 2004;146:11–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Ammelburg M, Frickey T, Lupas AN. Classification of AAA+ proteins. J Struct Biol. 2006;156:2–11.PubMedCrossRefGoogle Scholar
  23. 23.
    McGeoch AT, Trakselis MA, Laskey RA, Bell SD. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat Struct Mol Biol. 2005;12:756–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Jenkinson ER, Chong JP. Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert. Proc Natl Acad Sci USA. 2006;103:7613–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure–function relationship. Curr Opin Struct Biol. 1993;3:419–29.CrossRefGoogle Scholar
  26. 26.
    Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 1993;21:2541–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell. 2004;119:47–60.PubMedCrossRefGoogle Scholar
  28. 28.
    James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK. Crystal structure of the SF3 helicase from adeno-associated virus type 2. Structure. 2003;11:1025–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Moraes CT. A helicase is born. Nat Genet. 2001;28:200–1.PubMedCrossRefGoogle Scholar
  30. 30.
    Toth EA, Li Y, Sawaya MR, Cheng Y, Ellenberger T. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol Cell. 2003;12:1113–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Corn JE, Berger JM. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res. 2006;34:4082–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell. 1999;99:167–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Singleton MR, Sawaya MR, Ellenberger T, Wigley DB. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell. 2000;101:589–600.PubMedCrossRefGoogle Scholar
  34. 34.
    Egelman EH, Yu X, Wild R, Hingorani MM, Patel SS. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc Natl Acad Sci USA 1995;92:3869–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Donmez I, Patel SS. Mechanisms of a ring shaped helicase. Nucleic Acids Res. 2006;34:4216–24.PubMedCrossRefGoogle Scholar
  36. 36.
    LeBowitz JH, McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem. 1986;261:4738–48.PubMedGoogle Scholar
  37. 37.
    Kaplan DL, O’Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell. 2002;10:647–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang S, Yu X, VanLoock MS, Jezewska MJ, Bujalowski W, Egelman EH. Flexibility of the rings: structural asymmetry in the DnaB hexameric helicase. J Mol Biol. 2002;321:839–49.PubMedCrossRefGoogle Scholar
  39. 39.
    San Martin MC, Stamford NP, Dammerova N, Dixon NE, Carazo JM. A structural model for the Escherichia coli DnaB helicase based on electron microscopy data. J Struct Biol. 1995;114:167–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang G, Klein MG, Tokonzaba E, Zhang Y, Holden LG, Chen XS. The structure of a DnaB-family replicative helicase and its interactions with primase. Nat Struct Mol Biol. 2008;15:94–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Stelter M, Gutsche I, Kapp U, Bazin A, Bajic G, Goret G, et al. Architecture of a dodecameric bacterial replicative helicase. Structure. 2012;20:554–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Leipe DD, Aravind L, Grishin NV, Koonin EV. The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res. 2000;10:5–16.PubMedGoogle Scholar
  43. 43.
    Yu X, Horiguchi T, Shigesada K, Egelman EH. Three-dimensional reconstruction of transcription termination factor rho: orientation of the N-terminal domain and visualization of an RNA-binding site. J Mol Biol. 2000;299:1279–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Richardson JP. Loading Rho to terminate transcription. Cell. 2003;114:157–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Skordalakes E, Berger JM. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell. 2003;114:135–46.PubMedCrossRefGoogle Scholar
  46. 46.
    Skordalakes E, Berger JM. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination factor. Cell. 2006;127:553–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Boudvillain M, Walmacq C, Schwartz A, Jacquinot F. Simple enzymatic assays for the in vitro motor activity of transcription termination factor Rho from Escherichia coli. Methods Mol Biol. 2010;587:137–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Costa A, Onesti S. Structural biology of MCM helicases. Crit Rev Biochem Mol Biol. 2009;44:326–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Boos D, Frigola J, Diffley JF. Activation of the replicative DNA helicase: breaking up is hard to do. Curr Opin Cell Biol. 2012;24:423–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Sakakibara N, Kelman LM, Kelman Z. Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol. 2009;72:286–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–58.PubMedCrossRefGoogle Scholar
  52. 52.
    West SC. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet. 1997;31:213–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Berger JM. SnapShot: nucleic acid helicases and translocases. Cell. 2008;134: 888–888.e1Google Scholar
  54. 54.
    Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell. 2009;34:521–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta. 2011;1815:147–57.PubMedGoogle Scholar
  56. 56.
    Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, et al. Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Mol Cell. 2002;10:671–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamada K, Kunishima N, Mayanagi K, Ohnishi T, Nishino T, Iwasaki H, et al. Crystal structure of the Holliday junction migration motor protein RuvB from Thermus thermophilus HB8. Proc Natl Acad Sci USA 2001;98:1442–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Putnam CD, Clancy SB, Tsuruta H, Gonzalez S, Wetmur JG, Tainer JA. Structure and mechanism of the RuvB Holliday junction branch migration motor. J Mol Biol. 2001;311:297–310.PubMedCrossRefGoogle Scholar
  59. 59.
    Miyata T, Yamada K, Iwasaki H, Shinagawa H, Morikawa K, Mayanagi K. Two different oligomeric states of the RuvB branch migration motor protein as revealed by electron microscopy. J Struct Biol. 2000;13:83–9.CrossRefGoogle Scholar
  60. 60.
    Chen YJ, Yu X, Egelman EH. The hexameric ring structure of the Escherichia coli RuvB branch migration protein. J Mol Biol. 2002;319:587–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Bae B, Chen YH, Costa A, Onesti S, Brunzelle JS, Lin Y, et al. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure. 2009;17:211–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, et al. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci USA 2008;105:20191–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Yu X, VanLoock MS, Poplawski A, Kelman Z, Xiang T, Tye BK, et al. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep. 2002;3:792–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Gómez-Llorente Y, Fletcher RJ, Chen XS, Carazo JM, San Martín C. Polymorphism and double hexamer structure in the archaeal minichromosome maintenance (MCM) helicase from Methanobacterium thermoautotrophicum. J Biol Chem. 2005;280:40909–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Costa A, Pape T, van Heel M, Brick P, Patwardhan A, Onesti S. Structural studies of the archaeal MCM complex in different functional states. J Struct Biol. 2006;156:210–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Costa A, Pape T, van Heel M, Brick P, Patwardhan A, Onesti S. Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity. Nucleic Acids Res. 2006;34:5829–38.PubMedCrossRefGoogle Scholar
  67. 67.
    Costa A, van Duinen G, Medagli B, Chong J, Sakakibara N, Kelman Z, et al. Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase. EMBO J. 2008;27:2250–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang J. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol. 2004;148:259–67.PubMedCrossRefGoogle Scholar
  69. 69.
    Yu X, Jezewska MJ, Bujalowski W, Egelman EH. The hexameric E. coli DnaB helicase can exist in different quaternary states. J Mol Biol. 1996;259:7–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Crampton DJ, Ohi M, Qimron U, Walz T, Richardson CC. Oligomeric states of bacteriophage T7 gene 4 primase/helicase. J Mol Biol. 2006;360:667–77.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen YJ, Yu X, Kasiviswanathan R, Shin JH, Kelman Z, Egelman EH. Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J Mol Biol. 2005;346:389–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Jenkinson ER, Costa A, Leech AP, Patwardhan A, Onesti S, Chong JP. Mutations in subdomain B of the minichromosome maintenance (MCM) helicase affect DNA binding and modulate conformational transitions. J Biol Chem. 2009;284:5654–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Costa A, Onesti S. The MCM complex: (just) a replicative helicase? Biochem Soc Trans. 2008;36:136–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18:471–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS. The structure and function of MCM from archaeal M. thermoautotrophicum. Nat Struct Biol. 2003;10:160–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Smelkova NV, Borowiec JA. Dimerization of simian virus 40 T-antigen hexamers activates T-antigen DNA helicase activity. J Virol. 1997;71:8766–73.PubMedGoogle Scholar
  78. 78.
    Fletcher RJ, Shen J, Gómez-Llorente Y, Martín CS, Carazo JM, Chen XS. Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J Biol Chem. 2005;280:42405–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Shin JH, Heo GY, Kelman Z. The Methanothermobacter thermautotrophicus MCM helicase is active as a hexameric ring. J Biol Chem. 2009;284:540–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol. 1997;4:686–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Martin A, Baker TA, Sauer RT. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature. 2005;437:1115–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Sun B, Johnson DS, Patel G, Smith BY, Pandey M, Patel SS, et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature. 2011;478:132–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Crampton DJ, Guo S, Johnson DE, Richardson CC. The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. Proc Natl Acad Sci USA 2004;101:4373–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Moreau MJ, McGeoch AT, Lowe AR, Itzhaki LS, Bell SD. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol Cell. 2007;28:304–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Lyubimov AY, Strycharska M, Berger JM. The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol. 2011;21:240–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Yu X, Hingorani MM, Patel SS, Egelman EH. DNA is bound within the central hole to one or two of the six subunits of the T7 DNA helicase. Nat Struct Biol. 1996;3:740–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Hopfner KP, Michaelis J. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Curr Opin Struct Biol. 2007;17:87–95.PubMedCrossRefGoogle Scholar
  88. 88.
    Schwartz A, Rabhi M, Jacquinot F, Margeat E, Rahmouni AR, Boudvillain M. A stepwise 2′-hydroxyl activation mechanism for the bacterial transcription termination factor Rho helicase. Nat Struct Mol Biol. 2009;16:1309–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci USA 2012;109:6042–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, et al. Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase alpha-primase. J Biol Chem. 2012;387(32):26854–66.CrossRefGoogle Scholar
  91. 91.
    Patel SS, Pandey M, Nandakumar D. Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol. 2011;15:595–605.PubMedCrossRefGoogle Scholar
  92. 92.
    Manosas M, Spiering MM, Ding F, Croquette V, Benkovic SJ. Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res. 2012;40(13):6187–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Structural Biology, Sincrotrone Trieste (Elettra)Area Science PkTriesteItaly

Personalised recommendations