ATP-Dependent Chromatin Remodeling

  • Jaya YodhEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)


In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families—SWI/SNF, ISWI, CHD, INO80—based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA–histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex’s subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.


Chromatin Remodeler Nucleosome Position Chromatin Remodel Complex ATPase Domain Histone Chaperone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A. 1995;92:11170–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews AJ, Luger K. Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys. 2011;40:99–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Tan S, Davey CA. Nucleosome structural studies. Curr Opin Struct Biol. 2011;21:128–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Lowary PT, Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol. 1998;276:19–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu B, Mohideen K, Vasudevan D, Davey CA. Structural insight into the sequence dependence of nucleosome positioning. Structure. 2010;18:528–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol. 2009;16:124–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Lavelle C, Prunell A. Chromatin polymorphism and the nucleosome superfamily: a genealogy. Cell Cycle. 2007;6:2113–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Zlatanova J, Bishop TC, Victor JM, Jackson V, van Holde K. The nucleosome family: dynamic and growing. Structure. 2009;17:160–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Bohm V, Hieb AR, Andrews AJ, Gansen A, Rocker A, Toth K, et al. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 2011;39:3093–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Ulyanova NP, Schnitzler GR. Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol. 2005;25:11156–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Ulyanova NP, Schnitzler GR. Inverted factor access and slow reversion characterize SWI/SNF-altered nucleosome dimers. J Biol Chem. 2007;282:1018–28.PubMedCrossRefGoogle Scholar
  13. 13.
    Bancaud A, Wagner G, Conde ESN, Lavelle C, Wong H, Mozziconacci J, et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol Cell. 2007;27:135–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci U S A. 2007;104:15974–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol. 2010;2:a000596.PubMedCrossRefGoogle Scholar
  16. 16.
    Luger K, Hansen JC. Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol. 2005;15:188–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev. 2011;21:175–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Tremethick DJ. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell. 2007;128:651–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K. Structure and dynamic properties of nucleosome core particles. FEBS Lett. 2005;579:895–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science. 2004;306:1571–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Belmont AS. Mitotic chromosome scaffold structure: new approaches to an old controversy. Proc Natl Acad Sci U S A. 2002;99:15855–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Muller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG. Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol. 2004;24:9359–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith CL, Peterson CL. ATP-dependent chromatin remodeling. Curr Top Dev Biol. 2005;65:115–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.PubMedCrossRefGoogle Scholar
  25. 25.
    Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol. 2010;20:313–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Hopfner KP, Gerhold CB, Lakomek K, Wollmann P. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr Opin Struct Biol. 2012;22:225–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Hota SK, Bartholomew B. Diversity of operation in ATP-dependent chromatin remodelers. Biochim Biophys Acta. 2011;1809:476–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Kasten MM, Clapier CR, Cairns BR. SnapShot: chromatin remodeling: SWI/SNF. Cell. 2009;144(310):e311.Google Scholar
  29. 29.
    Liu N, Balliano A, Hayes JJ. Mechanism(s) of SWI/SNF-induced nucleosome mobilization. Chembiochem. 2011;12:196–204.PubMedCrossRefGoogle Scholar
  30. 30.
    Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420.PubMedCrossRefGoogle Scholar
  31. 31.
    Erdel F, Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 2011;278:3608–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Bao Y, Shen X. INO80 subfamily of chromatin remodeling complexes. Mutat Res. 2007;618:18–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Guillemette BT, Bataille AR, Gévry N, Adam M, Blanchette M, Robert FO, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 2005;3:e384.PubMedCrossRefGoogle Scholar
  34. 34.
    Durr H, Flaus A, Owen-Hughes T, Hopfner KP. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 2006;34:4160–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Durr H, Korner C, Muller M, Hickmann V, Hopfner KP. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell. 2005;121:363–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Quinn J, Fyrberg AM, Ganster RW, Schmidt MC, Peterson CL. DNA-binding properties of the yeast SWI/SNF complex. Nature. 1996;379:844–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, et al. A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol. 2005;12:683–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Zofall M, Persinger J, Kassabov SR, Bartholomew B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol. 2006;13:339–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Saha A, Wittmeyer J, Cairns BR. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol. 2005;12:747–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwanbeck R, Xiao H, Wu C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem. 2004;279:39933–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 2004;23:2092–104.PubMedCrossRefGoogle Scholar
  43. 43.
    Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat Struct Mol Biol. 2008;15:1272–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Leschziner AE, Saha A, Wittmeyer J, Zhang Y, Bustamante C, Cairns BR, et al. Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method. Proc Natl Acad Sci U S A. 2007;104:4913–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL, et al. Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 2008;28:6010–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Dechassa ML, Hota SK, Sen P, Chatterjee N, Prasad P, Bartholomew B. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Nucleic Acids Res. 2012;40:4412–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Dang W, Kagalwala MN, Bartholomew B. The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA. J Biol Chem. 2007;282:19418–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Gangaraju VK, Bartholomew B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol. 2007;27:3217–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Dang W, Bartholomew B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol. 2007;27:8306–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol. 2006;13:1078–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell. 2009;35:58–69.PubMedCrossRefGoogle Scholar
  52. 52.
    Zofall M, Persinger J, Bartholomew B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol Cell Biol. 2004;24:10047–57.PubMedCrossRefGoogle Scholar
  53. 53.
    Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat Res. 2007;618:3–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem. 2003;278:9212–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Saha A, Wittmeyer J, Cairns BR. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 2002;16:2120–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Whitehouse I, Stockdale C, Flaus A, Szczelkun MD, Owen-Hughes T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol Cell Biol. 2003;23:1935–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell. 2000;103:1133–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Gavin I, Horn PJ, Peterson CL. SWI/SNF chromatin remodeling requires changes in DNA topology. Mol Cell. 2001;7:97–104.PubMedCrossRefGoogle Scholar
  59. 59.
    Solinger JA, Kiianitsa K, Heyer WD. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell. 2002;10:1175–88.PubMedCrossRefGoogle Scholar
  60. 60.
    Amitani I, Baskin RJ, Kowalczykowski SC. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell. 2006;23:143–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Prasad TK, Robertson RB, Visnapuu ML, Chi P, Sung P, Greene EC. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J Mol Biol. 2007;369:940–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, et al. Direct observation of DNA distortion by the RSC complex. Mol Cell. 2006;21:417–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 2011;30:2364–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 2006;24:559–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Imbalzano AN, Kwon H, Green MR, Kingston RE. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 1994;370:481–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature. 1994;370:477–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Hota SK, Bartholomew B. Approaches for studying nucleosome movement by ATP-dependent chromatin remodeling complexes. Methods Mol Biol. 2012;809:367–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Hota SK, Dechassa ML, Prasad P, Bartholomew B. Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers. Methods Mol Biol. 2012;809:381–409.PubMedCrossRefGoogle Scholar
  69. 69.
    Sengupta SM, VanKanegan M, Persinger J, Logie C, Cairns BR, Peterson CL, et al. The interactions of yeast SWI/SNF and RSC with the nucleosome before and after chromatin remodeling. J Biol Chem. 2001;276:12636–44.PubMedGoogle Scholar
  70. 70.
    Kassabov SR, Zhang B, Persinger J , Bartholomew B. Sucleosome. Mol Cell. 2003;11:391-403.PubMedCrossRefGoogle Scholar
  71. 71.
    Alexeev A, Mazin A, Kowalczykowski SC. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol. 2003;10:182–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Shundrovsky A, Smith CL, Lis JT, Peterson CL, Wang MD. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat Struct Mol Biol. 2006;13:549–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Bouazoune K, Miranda TB, Jones PA, Kingston RE. Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF. Nucleic Acids Res. 2009;37:5279–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Kassabov SR, Henry NM, Zofall M, Tsukiyama T, Bartholomew B. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol Cell Biol.2002;22:7524–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 1999;97:833–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Langst G, Bonte EJ, Corona DF, Becker PB. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell. 1999;97:843–52.PubMedCrossRefGoogle Scholar
  77. 77.
    van Vugt JJ, de Jager M, Murawska M, Brehm A, van Noort J, Logie C. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One. 2009;4:e6345.PubMedCrossRefGoogle Scholar
  78. 78.
    Stockdale C, Flaus A, Ferreira H, Owen-Hughes T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem. 2006;281:16279–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Udugama M, Sabri A, Bartholomew B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol Cell Biol. 2011;31:662–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 2004;18:170–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell. 1997;90:145–55.PubMedCrossRefGoogle Scholar
  82. 82.
    Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature. 2009;462:1022–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Narlikar GJ. A proposal for kinetic proof reading by ISWI family chromatin remodeling motors. Curr Opin Chem Biol. 2010;14:660–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature. 2009;462:1016–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Ong MS, Richmond TJ, Davey CA. DNA stretching and extreme kinking in the nucleosome core. J Mol Biol. 2007;368:1067–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Aoyagi S, Narlikar G, Zheng C, Sif S, Kingston RE, Hayes JJ. Nucleosome remodeling by the human SWI/SNF complex requires transient global disruption of histone-DNA interactions. Mol Cell Biol. 2002;22:3653–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Cairns BR. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol. 2007;14:989–96.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu N, Peterson CL, Hayes JJ. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol Cell Biol. 2011;31:4165–75.PubMedCrossRefGoogle Scholar
  89. 89.
    Bowman GD. Mechanisms of ATP-dependent nucleosome sliding. Curr Opin Struct Biol. 2010;20:73–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Leschziner AE. Electron microscopy studies of nucleosome remodelers. Curr Opin Struct Biol. 2011;21:709–18PubMedCrossRefGoogle Scholar
  91. 91.
    Racki LR, Narlikar GJ. ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Curr Opin Genet Dev. 2008;18:137–44.PubMedCrossRefGoogle Scholar
  92. 92.
    Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature. 2011;472:448–53.PubMedCrossRefGoogle Scholar
  93. 93.
    Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science. 2003;301:1090–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Bruno M, Flaus A, Stockdale C, Rencurel C, Ferreira H, Owen-Hughes T. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol Cell. 2003;12:1599–606.PubMedCrossRefGoogle Scholar
  95. 95.
    Vicent GP, Nacht AS, Smith CL, Peterson CL, Dimitrov S, Beato M. DNA instructed displacement of histones H2A and H2B at an inducible promoter. Mol Cell. 2004;16:439–52.PubMedCrossRefGoogle Scholar
  96. 96.
    Cote J, Quinn J, Workman JL, Peterson CL. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 1994;265:53–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science. 2004;303:343–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Suto RK, Clarkson MJ, Tremethick DJ, Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol. 2000;7:1121–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Schnitzler G, Sif S, Kingston RE. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell. 1998;94:17–27.PubMedCrossRefGoogle Scholar
  100. 100.
    Schnitzler GR, Cheung CL, Hafner JH, Saurin AJ, Kingston RE, Lieber CM. Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol Cell Biol. 2001;21:8504–11.PubMedCrossRefGoogle Scholar
  101. 101.
    Lorch Y, Cairns BR, Zhang M, Kornberg RD. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell. 1998;94:29–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Phelan ML, Schnitzler GR, Kingston RE. Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases. Mol Cell Biol. 2000;20:6380–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Bash R, Wang H, Anderson C, Yodh J, Hager G, Lindsay SM, et al. AFM imaging of protein movements: histone H2A-H2B release during nucleosome remodeling. FEBS Lett. 2006;580:4757–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, et al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell. 2010;38:590–602.PubMedCrossRefGoogle Scholar
  105. 105.
    Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol. 2008;18:282–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T. Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol. 2009;16:151–8.PubMedCrossRefGoogle Scholar
  107. 107.
    De Cian A, Praly E, Ding F, Singh V, Lavelle C, Le Cam E, et al. ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA. PLoS One. 2012;7:e31845.PubMedCrossRefGoogle Scholar
  108. 108.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.PubMedCrossRefGoogle Scholar
  109. 109.
    Shogren-Knaak M, Ishii H, Sun J-M, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311:844–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Gardner KE, Allis C, Strahl BD. Operating on chromatin, a colorful language where context matters. J Mol Biol. 2011;409:36–46.PubMedCrossRefGoogle Scholar
  111. 111.
    Suganuma T, Workman JL. Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011;80:473–99.PubMedCrossRefGoogle Scholar
  112. 112.
    Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol. 2007;374:563–79.PubMedCrossRefGoogle Scholar
  113. 113.
    Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol. 2001;21:875–83.PubMedCrossRefGoogle Scholar
  114. 114.
    Clapier CR, Nightingale KP, Becker PB. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 2002;30:649–55.PubMedCrossRefGoogle Scholar
  115. 115.
    Erdel F, Krug J, Langst G, Rippe K. Targeting chromatin remodelers: signals and search mechanisms. Biochim Biophys Acta. 2011;1809:497–508.PubMedCrossRefGoogle Scholar
  116. 116.
    Rippe K, Schrader A, Riede P, Strohner R, Lehmann E, Langst G. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc Natl Acad Sci U S A. 2007;104:15635–40.PubMedCrossRefGoogle Scholar
  117. 117.
    Goldman JA, Garlick JD, Kingston RE. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J Biol Chem. 2010;285:4645–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Hauk G, McKnight JN, Nodelman IM, Bowman GD. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell. 2010;39:711–23.PubMedCrossRefGoogle Scholar
  119. 119.
    Hassan AH, Awad S, Al-Natour Z, Othman S, Mustafa F, Rizvi TA. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators. Biochem J. 2007;402:125–33.PubMedCrossRefGoogle Scholar
  120. 120.
    Glatt S, Alfieri C, Muller CW. Recognizing and remodeling the nucleosome. Curr Opin Struct Biol. 2011;21:335–41.PubMedCrossRefGoogle Scholar
  121. 121.
    Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 2006;442:86–90.PubMedGoogle Scholar
  122. 122.
    Das C, Tyler JK, Churchill ME. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci. 2010;35:476–89.PubMedCrossRefGoogle Scholar
  123. 123.
    Ransom M, Dennehey BK, Tyler JK. Chaperoning histones during DNA replication and repair. Cell. 2010;140:183–95.PubMedCrossRefGoogle Scholar
  124. 124.
    Alabert C, Groth A. Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol. 2012;13:153–67.PubMedCrossRefGoogle Scholar
  125. 125.
    Morrison AJ, Shen X. Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol. 2009;10:373–84.PubMedCrossRefGoogle Scholar
  126. 126.
    Jayani RS, Ramanujam PL, Galande S. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol. 2010;98:35–56.PubMedCrossRefGoogle Scholar
  127. 127.
    Truax AD, Greer SF. ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol Biol. 2012;809:175–88.PubMedCrossRefGoogle Scholar
  128. 128.
    Erdel F, Rippe K. Binding kinetics of human ISWI chromatin-remodelers to DNA repair sites elucidate their target location mechanism. Nucleus. 2012;2:105–12.CrossRefGoogle Scholar
  129. 129.
    Erdel F, Schubert T, Marth C, Langst G, Rippe K. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc Natl Acad Sci U S A. 2010;107:19873–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Blossey R, Schiessel H. Kinetic proofreading of gene activation by chromatin remodeling. HFSP J. 2008;2:167–70.PubMedCrossRefGoogle Scholar
  131. 131.
    Leschziner AE. Electron microscopy studies of nucleosome remodelers. Curr Opin Struct Biol. 2011;21:709–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations