Skip to main content

Nanotechnology for the Histologic Diagnosis of Infectious Diseases: A Dermatopathologists Perspective

  • Chapter
  • First Online:
Nanotechnology in Dermatology
  • 1878 Accesses

Abstract

Nanotechnology holds tremendous promise for the diagnosis and treatment of infectious diseases. This chapter will focus on diagnostic advances that utilize nanotechnology. Immunohistochemical and polymerase chain reaction assays have become mainstream diagnostic techniques because of their sensitivity, rapid turn-around time, and low cost. They are now routinely being used to diagnose infectious diseases as well as to provide important clinical information on drug resistance and toxin production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrhof W, Springer E, Bräuninger W, Kirkpatrick CJ, Weber A. PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis. J Clin Pathol. 2008;61(3):390–5.

    Article  PubMed  CAS  Google Scholar 

  2. Buffet M, Grange PA, Gerhardt P, et al. Diagnosing treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127(10):2345–50.

    Article  PubMed  CAS  Google Scholar 

  3. Hoang MP, High WA, Molberg KH. Secondary syphilis: a histologic and immunohistochemical evaluation. J Cutan Pathol. 2004;31(9):595–9.

    Article  PubMed  Google Scholar 

  4. Jung JH, Yoon EJ, Choi EC, Choi SS. Development of TaqMan probe-based real-time PCR method for erm(A), erm(B), and erm(C), rapid detection of macrolide-lincosamide-streptogramin B resistance genes, from clinical isolates. J Microbiol Biotechnol. 2009;19(11):1464–9.

    PubMed  CAS  Google Scholar 

  5. Esteban J, Martín-de-Hijas NZ, García-Almeida D, Bodas-Sánchez A, Gadea I, Fernández-Roblas R. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect. 2009;15(10):919–23.

    Article  PubMed  CAS  Google Scholar 

  6. Bacchi CE, Gown AM, Bacchi MM. Detection of infectious disease agents in tissue by immunocytochemistry. Braz J Med Biol Res. 1994;27(12):2803–20.

    PubMed  CAS  Google Scholar 

  7. White WL, Patrick JD, Miller LR. Evaluation of immunoperoxidase techniques to detect Rickettsia rickettsii in fixed tissue sections. Am J Clin Pathol. 1994;101(6):747–52.

    PubMed  CAS  Google Scholar 

  8. Tatti KM, Greer P, White E, Shieh WJ, Guarner J, Ferebee-Harris T, et al. Morphologic, immunologic, and molecular methods to detect bacillus anthracis in formalin-fixed tissues. Appl Immunohistochem Mol Morphol. 2006;14(2):234–43.

    Article  PubMed  Google Scholar 

  9. Shieh W-J, Guarner J, Paddock C, Greer P, Tatti K, Fischer M, et al., The Anthrax Bioterrorism Investigation Team. The critical role of pathology in the investigation of bioterrorism-related cutaneous anthrax. Am J Pathol. 2003;163:1901–10.

    Google Scholar 

  10. Guarner J, Jernigan J, Shieh W, Tatti K, Flannagan L, Stephens D, et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol. 2003;163:701–9.

    Article  PubMed  CAS  Google Scholar 

  11. Caponetti GC, Pantanowitz L, Marconi S, Havens JM, Lamps LW, Otis CN. Evaluation of immunohistochemistry in identifying Bartonella henselae in cat-scratch disease. Am J Clin Pathol. 2009;131(2):250–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ilhan F, Yener Z. Immunohistochemical detection of Brucella melitensis antigens in cases of naturally occurring abortions in sheep. J Vet Diagn Invest. 2008;20(6):803–6.

    Article  PubMed  Google Scholar 

  13. Zeidner NS, Carter LG, Monteneiri JA, Petersen JM, Schriefer M, Gage KL, et al. An outbreak of Francisella tularensis in captive prairie dogs: an ­immunohistochemical analysis. J Vet Diagn Invest. 2004;16(2):150–2.

    Article  PubMed  Google Scholar 

  14. Wabing HR. Comparison of immunohistochemical and modified Giemsa stains for demonstration of Helicobacter pylori infection in an African population. Afr Health Sci. 2002;2(2):52–5.

    Google Scholar 

  15. Ashton-Key M, Diss TC, Isaacson PG. Detection of Helicobacter pylori in gastric biopsy and resection specimens. J Clin Pathol. 1996;49(2):107–11.

    Article  PubMed  CAS  Google Scholar 

  16. Ciesielska U, Dziegiel P, Jagoda E, Podhorska-Okołów M, Zabel M. The detection of Helicobacter pylori in paraffin sections using the PCR technique and various primers as compared to histological techniques. Folia Morphol (Warsz). 2004;63(2):229–31.

    Google Scholar 

  17. Wild CJ, Greenlee JJ, Bolin CA, Barnett JK, Haake DA, Cheville NF. An improved immunohistochemical diagnostic technique for canine leptospirosis using antileptospiral antibodies on renal tissue. J Vet Diagn Invest. 2002;14(1):20–4.

    Article  PubMed  Google Scholar 

  18. Saglam YS, Yener Z, Temur A, Yalcin E. Immunohistochemical detection of leptospiral antigens in cases of naturally occurring abortions in sheep. Small Rumin Res. 2008;74(1–3):119–22.

    Article  Google Scholar 

  19. Lebech A, Clemmensen O, Hansen K. Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J Clin Microbiol. 1995;33(9):2328–33.

    PubMed  CAS  Google Scholar 

  20. Guarner J, Shieh WJ, Greer PW, Gabastou JM, Chu M, Hayes E, et al. Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue. Am J Clin Pathol. 2002;117(2):205–9.

    Article  PubMed  Google Scholar 

  21. Schmengler K, Goldmann T, Brade L, Sánchez Carballo PM, Albrecht S, Brade H, et al. Monoclonal antibody S60-4-14 reveals diagnostic potential in the identification of Pseudomonas aeruginosa in lung tissues of cystic fibrosis patients. Eur J Cell Biol. 2010;89(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  22. Szeredi L, Glávits R, Tenk M, Jánosi S. Application of anti-BCG antibody for rapid immunohistochemical detection of bacteria, fungi and protozoa in formalin-fixed paraffin-embedded tissue samples. Acta Vet Hung. 2008;56(1):89–99.

    Article  PubMed  Google Scholar 

  23. Prinz BM, Michaelis S, Kettelhack N, Mueller B, Burg G, Kempf W. Subcutaneous infection with Mycobacterium abscessus in a renal transplant recipient. Dermatology. 2004;208(3):259–61.

    Article  PubMed  CAS  Google Scholar 

  24. Schettini AP, Ferreira LC, Milagros R, Schettini MC, Pennini SN, Rebello PB. Enhancement in the histological diagnosis of leprosy in patients with only sensory loss by demonstration of mycobacterial antigens using anti-BCG polyclonal antibodies. Int J Lepr Other Mycobact Dis. 2001;69(4):335–40.

    PubMed  CAS  Google Scholar 

  25. Martinson SA, Hanna PE, Ikede BO, Lewis JP, Miller LM, Keefe GP, et al. Comparison of bacterial culture, histopathology, and immunohistochemistry for the diagnosis of Johne’s disease in culled dairy cows. J Vet Diagn Invest. 2008;20:51–7.

    Article  PubMed  Google Scholar 

  26. Huntley JFJ, Whitlock RH, Bannantine JP, Stabel JR. Comparison of diagnostic detection methods for Mycobacterium avium subsp. paratuberculosis in North American Bison. Vet Pathol. 2005;42:42–51.

    Article  PubMed  CAS  Google Scholar 

  27. Muvunyi CM, Dhont N, Verhelst R, Crucitti T, Reijans M, Mulders B, Simons G, Temmerman M, Claeys G, Padalko E. Evaluation of a new multiplex polymerase chain reaction assay STDFinder for the simultaneous detection of 7 sexually transmitted disease pathogens. Diagn Microbiol Infect Dis. 2011;[Epub ahead of print] PubMed PMID:21798683.

    Google Scholar 

  28. Dhiman N, Wright PA, Espy MJ, Schneider SK, Smith TF, Pritt BS. Concurrent detection of herpes simplex and varicella-zoster viruses by polymerase chain reaction from the same anatomic location. Diagn Microbiol Infect Dis. 2011;70(4):538–40.

    Article  PubMed  Google Scholar 

  29. Ramamurthy M, Alexander M, Aaron S, Kannangai R, Ravi V, Sridharan G, et al. Comparison of a conventional polymerase chain reaction with real-time polymerase chain reaction for the detection of neurotropic viruses in cerebrospinal fluid samples. Indian J Med Microbiol. 2011;29(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  30. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17(4):456–60.

    Article  PubMed  Google Scholar 

  31. Truong CD, Feng W, Li W, Khoury T, Li Q, Alrawi S, et al. Characteristics of Epstein-Barr virus-associated gastric cancer: a study of 235 cases at a comprehensive cancer center in U.S.A. J Exp Clin Cancer Res. 2009;28:14.

    Article  PubMed  Google Scholar 

  32. Suh N, Liapis H, Misdraji J, Brunt EM, Wang HL. Epstein-Barr virus hepatitis: diagnostic value of in situ hybridization, polymerase chain reaction, and immunohistochemistry on liver biopsy from immunocompetent patients. Am J Surg Pathol. 2007;31(9):1403–9.

    Article  PubMed  Google Scholar 

  33. Strickler J, Manivel J, Copenhaver C, Kubic V. Comparison of in situ hybridization and immunohistochemistry for detection of cytomegalovirus and herpes simplex virus. Hum Pathol. 1990;21:443–8.

    Article  PubMed  CAS  Google Scholar 

  34. Bajanowski T, Wiegand P, Brinkmann B. Comparison of different methods for CMV detection. Int J Legal Med. 1994;106:219–22.

    Article  PubMed  CAS  Google Scholar 

  35. Lu DY, Qian J, Easley KA, Waldrop SM, Cohen C. Automated in situ hybridization and immunohistochemistry for cytomegalovirus detection in paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol. 2009;17(2):158–64.

    Article  PubMed  CAS  Google Scholar 

  36. Benkoël L, Biagini P, Dodero F, De Lamballerie X, De Micco P, Chamlian A. Immunohistochemical detection of C-100 hepatitis C virus antigen in formaldehyde-fixed paraffin-embedded liver tissue. Correlation with serum, tissue and in situ RT-PCR results. Eur J Histochem. 2004;48(2):185–90.

    PubMed  Google Scholar 

  37. Qian X, Guerrero RB, Plummer TB, Alves VF, Lloyd RV. Detection of hepatitis C virus RNA in formalin-fixed paraffin-embedded sections with digoxigenin-labeled cRNA probes. Diagn Mol Pathol. 2004;13(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  38. Jeon JH, Shin DM, Cho SY, Song KY, Park NH, Kang HS, et al. Immunocytochemical detection of HPV16 E7 in cervical smear. Exp Mol Med. 2007;39(5):621–8.

    PubMed  CAS  Google Scholar 

  39. Mulvany NJ, Allen DG, Wilson SM. Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology. 2008;40(4):335–44.

    Article  PubMed  CAS  Google Scholar 

  40. Oda Y, Katsuda S, Okada Y, Kawahara EI, Ooi A, Kawashima A, et al. Detection of human cytomegalovirus, Epstein-Barr virus, and herpes simplex virus in diffuse interstitial pneumonia by polymerase chain reaction and immunohistochemistry. Am J Clin Pathol. 1994;102(4):495–502.

    PubMed  CAS  Google Scholar 

  41. He F, Du Q, Ho Y, Kwang J. Immunohistochemical detection of Influenza virus infection in formalin-fixed tissues with anti-H5 monoclonal antibody recognizing FFWTILKP. J Virol Methods. 2009;155(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  42. Escher F, Kuhl U, Sabi T, Suckau L, Lassner D, Poller W, et al. Immunohistological detection of Parvovirus B19 capsid proteins in endomyocardial biopsies from dilated cardiomyopathy patients. Med Sci Monit. 2008;14(6):CR333–8.

    PubMed  Google Scholar 

  43. Ogawa T, Gamoh K, Aoki H, Kobayashi R, Etoh M, Senda M, et al. Validation and standardization of virus neutralizing test using indirect immunoperoxidase technique for the quantification of antibodies to rabies virus. Zoonoses Public Health. 2008;55(6):323–7.

    Article  PubMed  CAS  Google Scholar 

  44. Lembo T, Niezgoda M, Velasco-Villa A, Cleaveland S, Ernest E, Rupprecht CE. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg Infect Dis. 2006;12(2):310–3.

    Article  PubMed  Google Scholar 

  45. Inoue S, Sato Y, Hasegawa H, Noguchi A, Yamada A, Kurata T, et al. Cross-reactive antigenicity of nucleoproteins of lyssaviruses recognized by a monospecific antirabies virus nucleoprotein antiserum on paraffin sections of formalin-fixed tissues. Pathol Int. 2003;53(8):525–33.

    Article  PubMed  CAS  Google Scholar 

  46. Wacharapluesadee S, Ruangvejvorachai P, Hemachudha T. A simple method for detection of rabies viral sequences in 16-year old archival brain specimens with one-week fixation in formalin. J Virol Methods. 2006;134(1–2):267–71.

    Article  PubMed  CAS  Google Scholar 

  47. Bialek R, Ernst F, Dietz K, Najvar LK, Knobloch J, Graybill JR, et al. Comparison of staining methods and a nested PCR assay to detect Histoplasma capsulatum in tissue sections. Am J Clin Pathol. 2002;117(4):597–603.

    Article  PubMed  CAS  Google Scholar 

  48. Fukuzawa M, Inaba H, Hayama M, Sakaguchi N, Sano K, Ito M, et al. Improved detection of medically important fungi by immunoperoxidase staining with polyclonal antibodies. Virchows Arch. 1995;427(4):407–14.

    Article  PubMed  CAS  Google Scholar 

  49. Hayden RT, Qian X, Roberts GD, Lloyd RV. In situ hybridization for the identification of yeast-like organisms in tissue sections. Diagn Mol Pathol. 2001;10(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  50. Hayden RT, Qian X, Procop GW, et al. In situ hybridization for the identification of filamentous fungi in tissue sections. Diagn Mol Pathol. 2002;11(2):119–26.

    Article  PubMed  CAS  Google Scholar 

  51. Blumenfeld W, Kovacs JA. Use of a monoclonal antibody to detect Pneumocystis carinii in induced sputum and bronchoalveolar lavage fluid by immunoperoxidase staining. Arch Pathol Lab Med. 1988;112(12):1233–6.

    PubMed  CAS  Google Scholar 

  52. Arastéh KN, Simon V, Musch R, Weiss RO, Przytarski K, Futh UM, et al. Sensitivity and specificity of indirect immunofluorescence and Grocott-technique in comparison with immunocytology (alkaline phosphatase anti alkaline phosphatase = APAAP) for the diagnosis of Pneumocystis carinii in broncho-alveolar lavage (BAL). Eur J Med Res. 1998;3(12):559–63.

    PubMed  Google Scholar 

  53. Amato VS, Tuon FF, de Andrade HF, Jr BH, Pagliari C, Fernandes ER, et al. Immunohistochemistry and polymerase chain reaction on paraffin-embedded material improve the diagnosis of cutaneous leishmaniasis in the Amazon region. Int J Dermatol. 2009;48(10):1091–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Elston MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elston, D.M. (2013). Nanotechnology for the Histologic Diagnosis of Infectious Diseases: A Dermatopathologists Perspective. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics