Diagnosis and the Skin Immune System



The traditional means of diagnosis of inflammatory skin diseases include physical examination, diagnostic tests such as skin biopsy for histology and immunofluorescence, and a variety of special serologic assays. Tools and techniques utilizing nanotechnology are designed to utilize less material; be minimally invasive; and offer rapid, sensitive, and specific results.


Surface Plasmon Resonance Chronic Lymphocytic Leukemia Chronic Lymphocytic Leukemia Cell Inflammatory Skin Disease Gold Nanoshells 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang J, et al. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging. Nanotechnology. 2012;23(9):095501.PubMedCrossRefGoogle Scholar
  2. 2.
    Welsher K, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Erogbogbo F, et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem. 2011;22(6):1081–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Haas P, et al. Fast quantitative single-molecule detection at ultralow concentrations. Anal Chem. 2010;82(14):6299–302.PubMedCrossRefGoogle Scholar
  5. 5.
    Mogensen M, et al. Optical coherence tomography for imaging of skin and skin diseases. Semin Cutan Med Surg. 2009;28(3):196–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Zulfakar MH, et al. In vivo response of GsdmA3Dfl/+ mice to topically applied anti-psoriatic agents: effects on epidermal thickness, as determined by optical coherence tomography and H&E staining. Exp Dermatol. 2011;20(3):269–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Aydin SZ, et al. Optical coherence tomography: a new tool to assess nail disease in psoriasis? Dermatology. 2011;222(4):311–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Buder K, Knuschke P, Wozel G. Evaluation of methylprednisolone aceponate, tacrolimus and combination thereof in the psoriasis plaque test using sum score, 20-MHz-ultrasonography and optical coherence tomography. Int J Clin Pharmacol Ther. 2010;48(12):814–20.PubMedGoogle Scholar
  9. 9.
    Egawa M, et al. In vivo characterization of the structure and components of lesional psoriatic skin from the observation with Raman spectroscopy and optical coherence tomography: a pilot study. J Dermatol Sci. 2010;57(1):66–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu W, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15(3):876–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Pastor F, et al. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther. 2011;19(10):1878–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Maclaughlin CM. et al. Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry. Nanomedicine. 2012Google Scholar
  13. 13.
    Donnelly RF, et al. Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis Photodyn Ther. 2010;7(4):222–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu J, et al. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc Natl Acad Sci U S A. 2010;107(26):11698–702.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol. 2011;7(4):489–503.PubMedCrossRefGoogle Scholar
  16. 16.
    Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. J Microencapsul. 2010;27(8):669–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Al-Qallaf B, Das DB. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery. Ann N Y Acad Sci. 2009;1161:83–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36(4–5):511–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Bal SM, et al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J Control Release. 2010;147(2):218–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen H, et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release. 2009;139(1):63–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Donnelly RF. Re: microneedle-mediated intradermal delivery of 5-aminolevulinic acid. J Control Release. 2008;129(3):153.PubMedCrossRefGoogle Scholar
  22. 22.
    Donnelly RF, et al. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem Photobiol. 2009;85(1):195–204.PubMedCrossRefGoogle Scholar
  23. 23.
    Donnelly RF, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release. 2008;129(3):154–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Donnelly RF, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Farnworth TK, et al. Comparison of skin necrosis in rats by using a new microneedle electrocautery, standard-size needle electrocautery, and the Shaw hemostatic scalpel. Ann Plast Surg. 1993;31(2):164–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Miller PR, et al. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta. 2012;88:739–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Windmiller JR, et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst. 2011;136(9):1846–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Zijlstra P, Paulo PM, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol. 2012;7(6):379–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Platt M, et al. Aptamer evolution for array-based diagnostics. Anal Biochem. 2009;390(2):203–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang L, et al. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene. Analyst. 2012;137(10):2415–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Gold L, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004.PubMedCrossRefGoogle Scholar
  32. 32.
    Li Y, Lee HJ, Corn RM. Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging. Nucleic Acids Res. 2006;34(22):6416–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Potuckova L, et al. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J Immunol Methods. 2011;371(1–2):38–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Jensen GC, et al. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys. 2011;13(11):4888–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu Y, et al. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal Chem. 2011;83(21):8286–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Simion M, et al. Detection of human papilloma viruses using nanostructurated silicon support in microarray technology. J Nanosci Nanotechnol. 2011;11(10):9102–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Kreuter A, et al. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J Am Acad Dermatol. 2011;65(1):125–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Zelada-Guillen GA, et al. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron. 2012;31(1):226–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Ellinghaus D, et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet. 2012;90(4):636–47.PubMedCrossRefGoogle Scholar
  40. 40.
    Botti E, et al. Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A. 2011;108(33):13710–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Mellmann A, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751.PubMedCrossRefGoogle Scholar
  42. 42.
    Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Elliott AM, et al. Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. J Biomol Tech. 2012;23(1):24–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Teste B, et al. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip. 2011;11(24):4207–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim JK, et al. Molecular imaging of a cancer-­targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials. 2012;33(1):207–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Dausse E, et al. HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology. 2011;9:25.PubMedCrossRefGoogle Scholar
  47. 47.
    Katoh Y, Katoh M. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review). Int J Mol Med. 2008;22(3):271–5.PubMedGoogle Scholar
  48. 48.
    Bharadwaj M, et al. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol. 2012;52:401–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Wei CY, et al. A recent update of pharmacogenomics in drug-induced severe skin reactions. Drug Metab Pharmacokinet. 2012;27(1):132–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Norcross MA, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012;26(11):F21–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Chung WH, Hung SI. Recent advances in the genetics and immunology of Stevens-Johnson syndrome and toxic epidermal necrosis. J Dermatol Sci. 2012;66(3):190–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Unger WW, et al. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun. 2011;37(3):151–9.PubMedCrossRefGoogle Scholar
  53. 53.
    DeNardo GL, et al. Nanomolecular HLA-DR10 antibody mimics: a potent system for molecular targeted therapy and imaging. Cancer Biother Radiopharm. 2008;23(6):783–96.PubMedCrossRefGoogle Scholar
  54. 54.
    Amiri H, Mahmoudi M, Lascialfari A. Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale. 2011;3(3):1022–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44(10):1061–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Gittard SD. et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss. 2011;149:171–85; discussion 227–45Google Scholar
  57. 57.
    Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44(10):1071–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Yoo D. et al. Theranostic magnetic nanoparticles. Acc Chem Res. 2011Google Scholar
  59. 59.
    Li X, et al. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials. 2011;32(10):2540–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of DermatologyUNC Chapel HillChapel HillUSA
  2. 2.Department of DermatologyUniversity of Maryland Medical CenterBaltimoreUSA

Personalised recommendations