Skip to main content

Mixture Theory-Based Poroelasticity and the Second Law of Thermodynamics

  • Chapter
  • First Online:
Continuum Mechanics of Anisotropic Materials
  • 2288 Accesses

Abstract

The decisive word in this postulate is the quantifier all it makes the postulate a restrictive condition on the internal constitutive assumptions that can be imposed on systems of the type under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkin RJ, Craine RE (1976a) Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math XXIX:209–244

    Article  MathSciNet  Google Scholar 

  • Atkin RJ, Craine RE (1976b) Continuum theories of mixtures: applications. J Inst Math Appl 17:153–207

    Article  MathSciNet  MATH  Google Scholar 

  • Biot MA (1935) Le problème de la consolidation des matières argileuses sous une charge. Ann Soc Sci Bruxelles B55:110–113

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J Acoust Soc Am 28:168–178

    Article  MathSciNet  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28:179–191

    Article  MathSciNet  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    MathSciNet  Google Scholar 

  • Biot MA (1962) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34:1254–1264

    Article  MathSciNet  Google Scholar 

  • Biot MA (1972) Theory of finite deformation of porous solids. Indiana Univ Math J 21:597–620

    Article  MathSciNet  Google Scholar 

  • Biot MA (1982) Generalized Lagrangian equations of non-linear reaction-diffusion. Chem Phys 66:11–26

    Article  MathSciNet  Google Scholar 

  • Bowen RM (1967) Toward a thermodynamics and mechanics of mixtures. Arch Rat Mech Anal 24:370–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen RM (1976) Mixtures and EM Field Theories. In: Eringen A.C. (ed) Continum Physics, Vol 3. Academic Press, New York

    Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  • Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  MATH  Google Scholar 

  • Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction. Arch Ration Mech Anal 13:167–178

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin SC, Cardoso L. (2012) Mixture theory-based poroelasticity as a model of interstitial tissue growth, Mech Mat 44:47–57

    Google Scholar 

  • De Boer R (1996) Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl Mech Rev 49:201–262

    Article  Google Scholar 

  • De Boer R (2000) Theory of porous media: highlights in the historical development and current state. Springer Verlag, Berlin

    MATH  Google Scholar 

  • Goodman MA, Cowin SC (1972) A continuum theory for granular materials. Arch Ration Mech Anal 44:249–266

    Article  MathSciNet  MATH  Google Scholar 

  • Noll W (2009) Thoughts on thermodynamics. 8th International Congress on thermal stresses

    Google Scholar 

  • Truesdell CA (1957) Sulle basi della termomeccania. Rend Lincei 22(33–38):1158–1166

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

The purpose of this appendix is to record the derivation of (30) and some related auxiliary results. Recall that ϖ(a) denotes a generic component-specific property such as \( {{v}_{{(a)}}} \) or \( {{\varepsilon}_{{(a)}}} \)and we seek a simple formula for \( \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^a}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} \) to be used in determining the continuum level form of the conservation laws by summing over the single constituent continuum forms of the conservation laws. A formula relating the density-weighted sum of the time derivatives of the selected components to the sum of the density-weighted time derivatives is desired. Recall that the sum of generic constituent-specific quantity per unit mass ϖ(a) is related to its density-weighted sum ϖ by (10.29). The time derivative of (10.29) with respect to the selected component is given by

$$ \rho \frac{{{{\rm{D}}^s}\varpi }}{{{\rm{D}}t}} + \varpi \frac{{{{\rm{D}}^s}\rho }}{{{\rm{D}}t}} = \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^s}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} + \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}\frac{{{{\rm{D}}^s}{{\rho}_{{(a)}}}}}{{{\rm{D}}t}}} $$
(10.95)

which may be solved for \( \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^s}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} \), thus

$$ \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^s}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} = \rho \frac{{{{\rm{D}}^s}\varpi }}{{{\rm{D}}t}} + \varpi \frac{{{{\rm{D}}^s}\rho }}{{{\rm{D}}t}} - \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}\frac{{{{\rm{D}}^s}{{\rho}_{{(a)}}}}}{{{\rm{D}}t}}}. $$
(10.96)

The relationship between the time derivatives with respect to the selected component and with respect to the “a” component is obtained using (10.12)

$$\begin{array}{llllllllll} \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^s}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} = \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^a}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} + \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(s)}}} \cdot \nabla {{\varpi}_{{(a)}}} - \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(a)}}} \cdot \nabla {{\varpi}_{{(a)}}}; \end{array}$$
(10.97)

this is used to rewrite (10.96) as

$$\begin{array}{lllllllll}\sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^a}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} = \rho \frac{{{{\rm{D}}^s}\varpi }}{{{\rm{D}}t}} + \varpi \frac{{{{\rm{D}}^s}\rho }}{{{\rm{D}}t}} - \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}\frac{{{{\rm{D}}^s}{{\rho}_{{(a)}}}}}{{{\rm{D}}t}}} - \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(s)}}} \cdot \nabla {{\varpi}_{{(a)}}}\cr\quad + \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(a)}}} \cdot \nabla {{\varpi}_{{(a)}}}. \end{array}$$
(10.98)

The following relationships, the first obtained from the conservation of mass for the mixture (10.25),

$$ \frac{{{{\rm{D}}^s}\rho }}{{{\rm{D}}t}} = \frac{{\partial \rho }}{{\partial t}} + {{v}_{{(s)}}} \cdot \nabla \rho = {{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}(t) - \nabla \cdot (\rho v) + {{v}_{{(s)}}} \cdot \nabla \rho $$
(10.99)

and the second obtained from the conservation of mass for the constituent (10.23)

$$ \frac{{{{\rm{D}}^s}{{\rho}_{{(a)}}}}}{{{\rm{D}}t}} = \frac{{\partial {{\rho}_{{(a)}}}}}{{\partial t}} + {{v}_{{(s)}}} \cdot \nabla {{\rho}_{{(a)}}} = {{{{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}}_{{(a)}}}(t) - \nabla \cdot ({{\rho}_{{(a)}}}{{v}_{{(a)}}}) + {{v}_{{(s)}}} \cdot \nabla {{\rho}_{{(a)}}} $$
(10.100)

will now be used in (10.98). However, before using (10.100) it is multiplied by and summed over all values of “a,” thus

$$ \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{D}^a}{{\varpi}_{{(a)}}}}}{{Dt}} = \rho \frac{{{{D}^s}\varpi }}{{Dt}} + \varpi ({{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}(t) - \nabla \cdot (\rho v) + {{v}_{{(s)}}} \cdot \nabla \rho ) - \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}} {{{{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}}_{{(a)}}}(t) + \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}} \nabla \cdot ({{\rho}_{{(a)}}}{{v}_{{(a)}}}) - \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}} {{v}_{{(s)}}} \cdot \nabla {{\rho}_{{(a)}}} - \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(s)}}} \cdot \nabla {{\varpi}_{{(a)}}} + \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} {{v}_{{(a)}}} \cdot \nabla {{\varpi}_{{(a)}}}. $$
(10.101)

The second line of the result above is condensed

$$\begin{array}{lllllll} \sum\limits_{{a = 1}}^N {{{\rho}_{{(a)}}}} \frac{{{{\rm{D}}^a}{{\varpi}_{{(a)}}}}}{{{\rm{D}}t}} =\ \rho \frac{{{{\rm{D}}^s}\varpi }}{{{\rm{D}}t}} + \varpi ({{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}(t) - \nabla \cdot (\rho v) + {{v}_{{(s)}}} \cdot \nabla \rho ) - \sum\limits_{{a = 1}}^N {{{\varpi}_{{(a)}}}} {{{{\mathord{\buildrel{\text{$\scriptscriptstyle\smile$}}\over s} }}}_{{(a)}}}(t) \cr+ \sum\limits_{{a = 1}}^N {\nabla \cdot ({{\varpi}_{{(a)}}}{{\rho}_{{(a)}}}{{v}_{{(a)}}})} - \sum\limits_{{a = 1}}^N {{{v}_{{(s)}}} \cdot \nabla {{\varpi}_{{(a)}}}{{\rho}_{{(a)}}}}\end{array} $$
(10.102)

and then the entire equation is algebraically reduced to (10.30).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cowin, S.C. (2013). Mixture Theory-Based Poroelasticity and the Second Law of Thermodynamics. In: Continuum Mechanics of Anisotropic Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5025-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5025-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5024-5

  • Online ISBN: 978-1-4614-5025-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics