Further Topics in Aerodynamic Noise

  • Tarit Bose
Part of the Springer Aerospace Technology book series (SAT, volume 7)


In principle, the convected quadrupole theory, as developed by Ffowcs-Williams, can be used also for supersonic jet noise. However, subsonic jet noise, where no complex phenomena such as shock or screeching noise exist, is based mainly on turbulent mixing. Supersonic jet noise, on the other hand, “is a cumulative effect of Mach wave radiation, nozzle tip radiation, nozzle lip radiation, shock turbulence interaction, shock unsteadiness and turbulent mixing” [65]. Mach waves, generally for supersonic, fully expanded nozzles, are mainly due to disturbance-convected, supersonically radiating sound in a highly directional peak and originating in a region of a few jet diameters from the nozzle exit. For supersonic over- or underexpanded nozzles, noise is produced by turbulence shock interactions, and it occurs at highly discrete frequencies.


Federal Aviation Administration Engine Noise Inlet Guide Vane Sonic Boom Serration Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bose, T.K.: Computational Fluiddynamics, 1st Reprint. Eastern Wiley, New Delhi (1990)Google Scholar
  2. 2.
    Bose, T.K.: Numerical Fluid Dynamics. NAROSA, Delhi (1997)Google Scholar
  3. 3.
    Goldstein, M.: Aeroacoustics. McGraw-Hill, New York (1976)MATHGoogle Scholar
  4. 4.
    Harris, C.M. (ed.): Handbook of Noise Control. McGraw-Hill, New York (1957)Google Scholar
  5. 5.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Part 1 (Chapters 1 to 8). McGraw-Hill, New York (1953)Google Scholar
  6. 6.
    Morino, L.: Mathematical foundations of integral methods. In: Morino, L. (ed.) Computational Methods in Potential Aerodynamics, pp. 271–291. Springer, Berlin (1985)Google Scholar
  7. 7.
    Rayleigh, L.: Theory of Sound, 2 Vols, 1895, (paperback edition, Dover; google edition:
  8. 8.
    Ribner, H.S.: The generation of sound by turbulent jets. Advances in Applied Mechanics, vol. III, p. 103. Academic, New York (1900)Google Scholar
  9. 9.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer, Berlin (2006)MATHGoogle Scholar
  10. 10.
    Speziale, C.G.: Computing non-equilibrium flows with time dependent RANS and VLES. 15th ICNMFD, Lecture Notes in Physics. Springer, Berlin (1996)Google Scholar
  11. 11.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)MATHGoogle Scholar
  12. 12.
    Wagner, C., Huettl, T., Sagaut, P.: Large-Eddy Simulation for Acoustics. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  13. 13.
    Ahuja, V., Mendonca, Y., Long, L.N.: Computational simulation of fore and aft radiation from a ducted fan, 6th Aeroacoustics Conference, Lehaina/HI, June 12–14, 2000, AIAA Paper 2000-1943 (2000)Google Scholar
  14. 14.
    Alberts, D.J.: Addressing Wind Turbine Noise. Report from Lawrence Technological University (2006)Google Scholar
  15. 15.
    Anderson, N., Eriksson, L.-E., Davidson, L.: Large-eddy simulation of a Mach 0.75 Jet. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, AIAA 2003-3312, Hilton Head, SC, 12–14 May 2003Google Scholar
  16. 16.
    Arunajatesan, S., Sinha, N.: Unified unsteady RANS-LES simulations of cavity flow field. 39th AIAA Aerospace Sciences Meeting, 8–11 Jan. 2011, Reno/NV, AIAA Paper 2001-0516 (2006)Google Scholar
  17. 17.
    Avital, E.J., Sandham, N.D., Luo, K.H.: Sound generation closing data from numerical simulations of mixing layers, 2nd AIAA/CEAS Aeroacoustics Conference, May 6–8, 1996, State College/PA, AIAA Paper 96-1728 (1996)Google Scholar
  18. 18.
    Bailly, C., Juve, D.: Numerical solution of acoustic propagation problems using linearized Euler equations. AIAA J. 38, 22 (2000)CrossRefGoogle Scholar
  19. 19.
    Bailly, C., Bogey, C., Juve, D.: Computation of flow noise using source terms in linearized Euler equations. 6th AIAA/CEAS Aeroacoustics Conference, AIAA 2000-2047, Lahaina/Hawaii, 12–14 June 2000; AIAA J. 42(2) (2004)Google Scholar
  20. 20.
    Batten, P., Goldberg, U. and Chakravarthy, S.: Sub-grid turbulence modeling for unsteady flow with acoustic resonance, 38th AIAA Aerospace Sciences Meeting & Exhibit, Jan 10–13, 2000, AIAA Paper 2000-473 (2000)Google Scholar
  21. 21.
    Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large eddy simulation. AIAA J. 42, 485 (2004)CrossRefGoogle Scholar
  22. 22.
    Batten, P., Goldberg, U., Kang, E., Chakravarthy, S.: Smart sub-grid scale models for LES and hybrid RANS/LES, 6th AIAA Theoretical Fluid Mechanics Conference, 27–30 June 2011, Honolulu/HI, 2011-3472 (2011)Google Scholar
  23. 23.
    Bayliss, A., Maestrello, L., Parikh, P., Turkel, E.: A fourth order scheme for the unsteady compressible Navier–Stokes equations. AIAA Fluid dynamic and plasma dynamic Conference, Cincinnati, AIAA 85-1694, 16–18 July 1985Google Scholar
  24. 24.
    Boersma, B.J., Lele, S.K.: Large Eddy simulation of a Mach 0.9 turbulent jet. AIAA/CEAS Aeroacoustics Conference, AIAA Paper 1999-1874, Bellevue, WA, 10–16 May 1999Google Scholar
  25. 25.
    Boersma, B.J.: Large eddy simulation of the sound field of a round turbulent jet. Theor. Comput. Fluid Dyn. 19, 161–170 (2005)MATHCrossRefGoogle Scholar
  26. 26.
    Bogey, C., Bailly, C., Juve, D.: Computation of the sound radiated by a 3-D jet using large eddy simulation. 6th AIAA/CEAS Aeroacoustics Conference, AIAA 2000–2009, Lahaina/Hawaii, 12–14 June 2000Google Scholar
  27. 27.
    Bogey, C., Bailly, C., Juve, D.: Noise investigation of a high subsonic moderate Reynolds number jet using a compressible LES. Theor. Comput. Fluid Dyn. 16, 273–297 (2003)MATHCrossRefGoogle Scholar
  28. 28.
    Bose, T.K.: Flow properties fluctuations in a convergent-divergent nozzle. J. Spacecraft Rockets 10, 530 (1973)CrossRefGoogle Scholar
  29. 29.
    Carley, M.: Time domain calculation of noise generated by a propellar in a flow. Ph.D. Thesis, Dublin University (1996)Google Scholar
  30. 30.
    Chyczewski, T.S., Morris, P., Long, L.N.: Large-eddy simulation of wall bounded shear flow using the non-linear disturbance equations. 6th AIAA/CEAS Aeroacoustics Conference, Lahaina, HI, 12–14 June 2000Google Scholar
  31. 31.
    Chyczewski, T.S., Long, L.N.: Numerical prediction of the noise produced by a perfectly expanded rectangular jet, 2nd AIAA/CEAS Aeroacoustics Conference, May 6–8, 1996, State College/PA, AIAA Paper 96-1730 (1996)Google Scholar
  32. 32.
    Coltman, J.W.: Acoustics of the flute. Phys. Today 21(11), 25–32 (1968)CrossRefGoogle Scholar
  33. 33.
    Colonius, T., Lele, S.K., Moin, P.: Sound generation in mixing layer. J. Fluid Mech. 330, 375–409 (1997)MATHCrossRefGoogle Scholar
  34. 34.
    Csanady, G.I.: The effects of mean velocity variation on jet noise. J. Fluid Mech. 26, Part 1, 183–197 (1966)Google Scholar
  35. 35.
    Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. 231A, 505–514 (1955)MathSciNetGoogle Scholar
  36. 36.
    Davies. P.O.A.L., Fischer, M.J., Barrat, M.J.: The characteristics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337–367 (1963)Google Scholar
  37. 37.
    Freund, J.B.: Acoustic sources in a turbulent jet: a direct numerical simulation study. 5th AEAA/CEAS Aeroacoustics Conference, AIAA Paper 99-1858, Bellevue, WA, 10–12 May 1999Google Scholar
  38. 38.
    Freund, J.B.: Noise source at in low reynoldsnumber turbulent jet. J. Fluid Mech. 438, 277–305 (2001)MATHCrossRefGoogle Scholar
  39. 39.
    Ffowcs-Williams, J.F.: The noise from turbulence convected at high speed flow. Phil. Transac. Royal Soc. 255A, No. 1061, 469–503 (1963)CrossRefGoogle Scholar
  40. 40.
    Frink, N.: Assessment of an unstructured grid method for predicting 3d turbulent viscous flow. 34th AIAA Aerospace Sciences Meeting and Exhibit, 15–18 Jan., 1996, Reno/NV, AIAA Paper 96-0292 (1996)Google Scholar
  41. 41.
    Garrison, L.A., Lyrintzis, A.S., Blaisdell, G.A., Dalton, W.N.: Computational fluiddynamics analysis of jets with internal forced mixures. 17th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2005–2887, Monterey/CA, 23–25 May 2005Google Scholar
  42. 42.
    Geiger, D.H.: Comparative analysis of serrated trailing edge designs on idealized aircraft engine fan blades for noise reduction. M.S. thesis, VPI & SU, Blacksburg, VA, 2004Google Scholar
  43. 43.
    George, A.R.: Helicopter noise – state of the art. J. Aircraft 15, 707 (1978)CrossRefGoogle Scholar
  44. 44.
    Goldberg, U., Batten, P., Palaniswamy, S., Chakravarty, S., Peroomian, O.: Hypersonic flow prediction using linear and non-linear turbulence closures. J. Aircraft 27(4), 671–675 (2000)CrossRefGoogle Scholar
  45. 45.
    Gupta, K.K., Choi, S.B., Ibrahim, A.: Aeroelastic acoustic simulation of flight systems. AIAA J. 48(4), 798–807 (2010)CrossRefGoogle Scholar
  46. 46.
    Gupta, K.K., Choi, S.B., Ibrahim, A.: Development of aerothermoelastic acoustics simulation capability of flight vehicles. 48th AIAA Aerospace Sciences Meeting, 4–7 Jan., 2010, Orlando/FL, AIAA Paper 2010-50 (2010)Google Scholar
  47. 47.
    Hammond, D., McKinley, R., Hale, B.: Noise reduction efforts for special operations C-130 aircraft using active synchrophaser control. Air Force Research Lab. Report ASC-99-0898 (1999)Google Scholar
  48. 48.
    Hixon, R.: 3D characteristic-based boundary conditions for CAA. 6th AIAA/CEAS Aeroacoustics Conference, AIAA 2000–2004, Lahaina, HI, 12–14 June 2000Google Scholar
  49. 49.
    Hixon, R., Shih, S.-H., Mankbadi, R.R.: Evaluation of boundary conditions for computational aeroacoustics. AIAA J. 33(11), 2006–2012 (1995)MATHCrossRefGoogle Scholar
  50. 50.
    Hixon, R.: On increasing the accuracy of MaCormack schemes for aeroacoustic applications. AIAA/CEAS Aeroacoustics Conference, AIAA-97-1586-CP, Atlanta, GA, 12–14 May 1997Google Scholar
  51. 51.
    Howe, M.S.: Aerodynamic noise of a serrated trailing edge. J. Fluid Struct. 5(1), 33–45 (1991)CrossRefGoogle Scholar
  52. 52.
    Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)CrossRefGoogle Scholar
  53. 53.
    Kennedy, C.A.: Low storage, explicit runge-kutta schemes for the compressible navier-stokes equations ICASE report No. 99–22, NASA/CR-1999-209349, NASA/Langley, Hampton/VA (1999)Google Scholar
  54. 54.
    Kolbe, R., Kailasnath, K., Young, T., Boris, J., Landsberg, A.: Numerical simulations of flow modification of supersonic rectangular jets. AIAA J. 34(5), 902–908 (1996)CrossRefGoogle Scholar
  55. 55.
    Krishnappa, G., Csanady, G.T.: An experimental investigation of the composition of jet noise. J. Fluid Mech. 37, Part 1, 149–159 (1969)Google Scholar
  56. 56.
    Lassiter, L.W., Hubbard, H.H.: Experimental studies of noise from subsonic jets in still air. NASA TN-2757 (1952)Google Scholar
  57. 57.
    Lee, A., Harris, W.L., Widnall, S.E.: A study of helicopter rotated noise. J. Aircraft 14, 1126 (1977)CrossRefGoogle Scholar
  58. 58.
    Lew, P., Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Effects of inflow forcing on jet noise using large eddy simulation. 45th Aerospace Scientific Conference, AIAA Paper 2004-0516, Reno/NV, 18-14 Jan 2004Google Scholar
  59. 59.
    Lew, P., Blaisdell, G.A., Lyrintzis, A.S.: Recent progress of hot jet aeroacoustics using 3-D large eddy simulation. AIAA Paper 2005-3084 (2005)Google Scholar
  60. 60.
    Lew, P.-T., Blaisdell, G.A., Lyrintzis, A.S.: Investigation of noise sources in turbulent hot jets using large eddy simulation data, 45th AIAAero Science Meeting, AIAA Paper 2007-16, Reno/NV, 8–11 January 2007Google Scholar
  61. 61.
    Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. 211A, 564–587 (1952)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Lighthill, M.J.: On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. 222A, 1–32 (1954)MathSciNetGoogle Scholar
  63. 63.
    Lighthill, M.J.: Jet noise. AIAA J. 1(7), 1507–1517 (1963)MATHCrossRefGoogle Scholar
  64. 64.
    Lloyd, P.: Some aspects of engine noise. J. R. Aeron. Soc. 63, 541 (1959)Google Scholar
  65. 65.
    Louis, J.F., Patel, J.R.: A Systematic Study of Supersonic Jet Noise. Gas Turbine Lab., Massachusetts Institute of Technology, Cambridge (1971), GTI Report 107Google Scholar
  66. 66.
    Lyrintzis, A.S.: The use of Kirchhoff’s method in computational aeroacoustics. ASME J. Fluids Eng. 116, 665 (1994)CrossRefGoogle Scholar
  67. 67.
    Lyrintzis, A.S.: Integral methods in computational aeroacoustics – from the (CFD) new field to the (Acoustic Far Field), CEAS Workshop, Athens/Greece, 2002Google Scholar
  68. 68.
    Mawardi, O.K.: On the spectrum of noise from turbulence. J. Acoust. Soc. Am. 27(3), 442–445 (1955)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Mankbadi, R.R., Hayder, M.E., Povinelli, L.A.: The structure of supersonic jet flow and its radiated sound. 31st Aerospace Sciences Meeting and Exhibit, AIAA 93-0459, Reno/NV, 11–14 January 1993Google Scholar
  70. 70.
    Mankbadi, R.R., Hayder, M.E., Povinelli, L.A.: Structure of supersonic jet flow and its radiated sound. AIAA J. 32(5), 897–906 (1994)CrossRefGoogle Scholar
  71. 71.
    Mankbadi, R.R., Shih, S.-H., Hixon, R., Povinelli, L.A.: Use of linearized Euler equation for supersonic jet noise prediction. AIAA J. 36(2), 140–147 (1998)MATHCrossRefGoogle Scholar
  72. 72.
    Mankbadi, R.R., Shih, S.-H., Hixon, R., Povinelli, L.A.: Direct computation of jet noise produced by large-scale asymmetric structures. J. Propulsion Power 16(2), 207–215 (2000)CrossRefGoogle Scholar
  73. 73.
    Marte, J.E., Kurtz, D.W.: A review of aerodynamic noise from propellers, rotors and lift fans. NASA Tech. Report 32-1462 (1970)Google Scholar
  74. 74.
    Marsden, A.L., Wang, M., Mohammmadi, B.: Shape optimization for aerodynamic noise control. Center for Turbulence Research Annual Brief, pp. 241–47, 2001Google Scholar
  75. 75.
    Mihaescu, M., Szasz, R.-Z., Fuchs, L., Gutmark, E.: Numerical investigations of the acoustics of a coaxial nozzle. 43rd Aerospace Sciences Meeting, 10–13 Jan. 2005, Reno/NV, AIAA 2005-420 (2005)Google Scholar
  76. 76.
    Mitchell, B.E., Lele, S.K., Moin, P.: Direct computation of machwave radiation in an axi-symmetric jet. AIAA J. 35(10), 1574–1580 (1997)MATHCrossRefGoogle Scholar
  77. 77.
    Mitchell, B.E., Lele, S.K., Moin, P.: Direct computation of sound generated by vortex pairing in an axi-symmetric field. J. Fluid Mech. 383, 113–142 (1999)MATHCrossRefGoogle Scholar
  78. 78.
    Mollo-Christensen, E.: Jet noise and shear flow instability seen from experimenter’s view point. J. Appl. Mech. Trans. ASME 1 (1967)Google Scholar
  79. 79.
    Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic sub-grid scale model for compressible turbulence and salar transport. Phys. Fluids A 3(11), 2746–2757 (1991)MATHCrossRefGoogle Scholar
  80. 80.
    Morgans, A.S., Karabasov, S.A., Dowling, A.P., Hynes, T.P.: Transonic helicopter noise. AIAA J. 43(7), 1512–1524 (2005)CrossRefGoogle Scholar
  81. 81.
    Morley, C.I.: How to reduce the noise of jet engines with a method using non-linear disturbance operations. Engineering 783 (1964)Google Scholar
  82. 82.
    Morris, P.J., Long, L.N., Bangalore, A., Wang, Q.: A parallel three dimensional computational aeroacoustics method using non-linear disturbance operations. J. Comput. Phys. 133, 56–74 (1997)MATHCrossRefGoogle Scholar
  83. 83.
    Nagamatsu, H.T., Horvey, G.: Supersonic jet noise. 8th AIAA Aerospace Sciences Meeting, 19–21 Jan., 1970, AIAA Paper 237 (1970)Google Scholar
  84. 84.
    Owis, F., Balakumar, P.: Evaluation of boundary conditions and numerical schemes for jet noise computation. 38th Aerospace Sciences Meeting and Exhibit, Reno/NV, 10–13 Jan. 2000, AIAA Paper 2000-0923 (2000)Google Scholar
  85. 85.
    Ozonik, Y., Long, L.N.: Comparison of sound radiating from engine inlet. AIAA J. 34(5), 894–901 (1996)CrossRefGoogle Scholar
  86. 86.
    Ozonik, Y.: Multi-grid acceleration of a high resolution computational aeroacoustic scheme. AIAA J. 35(3), 894–901 (1996)Google Scholar
  87. 87.
    Pan, F.L.: The use of surface integral methods in computational jet aeroacoustics. Ph.D. thesis, Purdue University, 2004Google Scholar
  88. 88.
    Pan, F.L., Uzun, A., Lyrintzis, A.S.: Surface integral methods in jet aeroacoustics: refraction corrections. AIAA J. 45(2), 381–87 (2008)Google Scholar
  89. 89.
    Parthasarathy, S.P., Massier, P.F., Cuffel, R.F.: Comparison of results obtained with various sources used to measure fluctuating quantities. AIAA Aeroacoustics Conference, AIAA Paper 73-1043, Seattle, WA, 15–17 October 1973Google Scholar
  90. 90.
    Powell, A.: Similarity and turbulent jet noise. J. Acoust. Soc. Am. 31(6), 812–813 (1959)CrossRefGoogle Scholar
  91. 91.
    Proudman, I.: The generation of noise by isotropic turbulence. Proc. R. Soc. 214A, 119–132 (1952)MathSciNetGoogle Scholar
  92. 92.
    Quemere, P., Sagaut, P.: Zonal multi-grid RANS/LES simulation of turbulent flows. Int. J. Numer. Methods Fluids (2002)Google Scholar
  93. 93.
    Randall, D.G.: Methods for estimating distribution and intensities of sonic bangs. Aeron. Res. Council, London, R and M 3113 (1957)Google Scholar
  94. 94.
    Rao, P.S.: Supersonic bangs. Aeronaut. Q. 2, part I: 21, part II: 131 (1956)Google Scholar
  95. 95.
    Ribner, H.S.: Quadrupol correlations governing the pattern of jet noise. J. Fluid Mech. 38, Part 1, 1–24 (1969)Google Scholar
  96. 96.
    Ribner, H.S.: The noise of aircraft. 4th Congress of International Council of Aeronautical Sciences, Paris, p. 13. Macmillan, London (1969)Google Scholar
  97. 97.
    Roe, P.L.: Technical prospects for computational aeroacoustics. AIAA 92-02-032 (1992)Google Scholar
  98. 98.
    Schumann, U.: Subgrid-scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 86, 376–404 (1975)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Schlinker, R.H., Simonich, J.C., Sharon, D.W., Reba, R.A., Colonius, T., Gudemendsson, K., Ladeincla, F.: Supersonic jet noise from round and chevron nozzles: experimental studies. 30th AIAA Aeroacoustics Conference, AIAA 2009-3257, Miami/FL, 11–13 May 2009Google Scholar
  100. 100.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  101. 101.
    Seror, C., Sagaut, P., Bailley, C., Juve, D.: Subgrid-scale contribution to noise prediction and decaying turbulence. AIAA J. 38(10), 1795–1803 (2000)CrossRefGoogle Scholar
  102. 102.
    Seror, C., Sagaut, P., Bailley, C., Juve, D.: On the radiated noise computed in large eddy simulation. Phys. Fluids 13(2), 476–487 (2001)CrossRefGoogle Scholar
  103. 103.
    Smagorinsky, J.: General circulation, experiments with the primitive equations. Mon. Weather Rev., Washington/DC 91, 99–164 (1963)Google Scholar
  104. 104.
    Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 61–98 (1988)MATHCrossRefGoogle Scholar
  105. 105.
    Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES and on a hybrid RANS/LES approach. 1st AFOSR International Conference on DNS/LES, Ruston, LA (1997)Google Scholar
  106. 106.
    Spalart, P.R.: Strategies for turbulence modeling and simulation. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRefGoogle Scholar
  107. 107.
    Speziale, C.G.: Computing non-equilibrium flows with time-dependent RANS and VLES. 15th International Conference on Numerical Methods in Fluid Mechanics, Monterey, 1996Google Scholar
  108. 108.
    Strawn, R.C., Oliker, L., Biswas, R.: New computational methods for the prediction and analysis of helicopter noise. 2nd AIAA/CEAS Aeroacoustics Conference, AIAA paper 1996-1696, State College, PA, 6–8 May 1996Google Scholar
  109. 109.
    Strelets, M.: Detached eddy simulation of massively separated flows. Aerosciences Meeting, AIAA Paper 2001-0879 (2001), Reno, NV, 3–8 January 2011Google Scholar
  110. 110.
    Tam, C.K.W.: Supersonic jet noise generated by large scale disturbance. AIAA Aeroacoustic Conference, AIAA Paper 73-992, Seattle/WA, 15–17 Oct 1973Google Scholar
  111. 111.
    Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational aeroacoustics. J. Comput. Phys. 107, 262–281 (1993)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc., Ser. 2 20, 196–212 (1921)Google Scholar
  113. 113.
    von Terzi, D.A., Fasel, H.F.: A new flow simulation methodology applied to the turbulent facing step. 40th Aerospace Sciences Meeting and Exhibit, Reno/NV, 14–17 Jan. 2002, AIAA Paper 2002-0429 (2002)Google Scholar
  114. 114.
    Thomas, J.P., Roe, P.L.: Development of non-dissipative numerical schemes for computational aeroacoustics. AIAA 93-3382-CP (1993)Google Scholar
  115. 115.
    Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Thompson, K.W.: Time-dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89, 439–461 (1990)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Detached-eddy simulations past a circular cylinder. Int. J. Flow Turb. Combust. 21, 252–263 (2000)Google Scholar
  118. 118.
    Troff, B., Manoha, E., Sagaut, P.: Trailing edge noise prediction using LES and acoustic analogy, AIAA J., 38(4), 575–583 (2000)CrossRefGoogle Scholar
  119. 119.
    Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Recent progress towards large Eddy simulation code for jet aeroacoustics. 8th AIAA/CEAS Conference and Exhibit, June 17–19, 2002, AIAA Paper 2002-2598 (2002)Google Scholar
  120. 120.
    Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: 3D large Eddy simulation for jet aeroacoustics. 9th AIAA/CIAS Aeroacoustics Conference and Exhibit, 12–14 May 2003, Hilton Head/SC, AIAA Paper 2003-3322 (2003)Google Scholar
  121. 121.
    Uzun, A.: Ph.D. Thesis, Purdue University, 2003Google Scholar
  122. 122.
    Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Sensitivity to the Smagorinsky constant in turbulent jet simulation. AIAA J. 41(10), 2077–2079 (2003)CrossRefGoogle Scholar
  123. 123.
    Uzun, A., Lyrintzis, A.S., Blaisdell, G.A.: Coupling of integral acoustic methods with LES for jet noise prediction. Aeroacoustics 3(4), 297–346 (2005)CrossRefGoogle Scholar
  124. 124.
    Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Impact of subgrid-scale models on jet turbulence and noise. AIAA J. 44(6), 1365–1368 (2006)CrossRefGoogle Scholar
  125. 125.
    Uzun, A., Hussain, M.Y.: Noise generation in the near nozzle region of a chevron nozzle jet flow. 28th AIAA Aerospace Conf., May 2007, AIAA Paper 2007-3596 (2007)Google Scholar
  126. 126.
    Wang, M., Moin, P.: Computation of the trailing edge flow and noise using large eddy simulation. AIAA J. 38(12), 2201–2209 (2000)CrossRefGoogle Scholar
  127. 127.
    Warren, C.H.E., Randall, D.G.: The theory of sonic bangs. Prog. Aeron. Sci. 1, 238–274 (1961)MATHCrossRefGoogle Scholar
  128. 128.
    Whitham, G.B.: The flow pattern of a supersonic projectile. Comm. Pure Appl. Math. 5, 301 (1952)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Yoshizawa, A.: Statistical theory for compressible turbulent shear flows. Phys. Fluids 29(7), 2152–2164 (1986)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tarit Bose
    • 1
  1. 1.Ret., Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations