Skip to main content

Osmoprotectants: Potential for Crop Improvement Under Adverse Conditions

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Abiotic stresses such as drought, cold, heat, and salinity are major factors that limit plant growth and development and account for a major loss in crop productivity worldwide. Thus, engineering plants for tolerance towards such environmental menaces is the prime concern for crop improvement programs. Engineering osmoprotectants biosynthetic pathway is considered as one among many successful approaches taken for crop improvement under adverse conditions. Osmoprotectants or compatible solutes are thought to act by stabilizing membranes and proteins and maintaining osmotic potential in the cell during stresses. Although not all crop plants are able to synthesize these special molecules, many stress tolerant plants are shown to accumulate them under stress conditions. This group primarily includes proline, glycine betaines, ectoine, trehalose, and polyols. However, many attempts have been made at engineering plant system with genes from biosynthetic pathways of osmoprotectants; these transgenic plants have shown different tolerance levels, because of many metabolic limitations. Thus, a more elaborate and wholesome approach may be required to look past the current scenario. This chapter will encompass the potential role of osmoprotectants in plant stress adaptation and the possibilities for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ROS:

Reactive oxygen species

M6PI:

Mannose-6-phosphate isomerase

M6PR:

Mannose-6-phosphate reductase

M1PP:

Mannose-1-phosphate phosphatase

MtlD:

Mannitol-1-phosphate dehydrogenase

NAD:

Nicotinamide adenine dinucleotide

GFOR:

Glucose-fructose oxidoreductase

S6PDH:

Sorbitol-6-phosphate dehydrogenase

NADP:

Nicotinamide adenine dinucleotide phosphate

S6PP:

Sorbitol-6-phosphate phosphatase

Stpd1 :

Gene encoding sorbitol-6-phosphate dehydrogenase

MIPS:

myo-Inositol-1-phosphate synthase

IMP:

Inositol monophosphatase

ABA:

Abscisic acid

PINO1:

Porteresia coarctata inositol-1-phosphate synthase

TPS:

Trehalose-6-phosphate synthase

TPP:

Trehalose-6-phosphate phosphatase

OtsA :

E. coli gene encoding TPS

OtsB :

E. coli gene encoding TPP

P5CS:

l-Δ1-pyrroline-5-carboxylate synthetase

P5CR:

l-Δ1-pyrroline-5-carboxylate reductase

ProDH:

Proline dehydrogenase

P5C:

l-Δ1-pyrroline-5-carboxylate

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

ODC:

Ornithine decarboxylase

ADC:

Arginine decarboxylase

CPA:

N-carbamoylputrescine amidohydrolase

SPDS:

Spermidine synthases

SPMS:

Spermine synthases

SAMDC:

S-adenosylmethionine decarboxylase

SMCs:

Small molecule chaperones

DABA:

l-2,4-diaminobutyrate

EctB:

l-2,4-diaminobutyric acid transaminase

EctA:

l-2,4-diaminobutyric acid acetyltransferase

EctC:

Ectoine synthase

CMO:

Choline monooxygenase

BADH:

Betaine aldehyde dehydrogenase

codA :

Gene encoding choline oxidase

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating ­transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing, Oxford, UK

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas JC, Bitrián M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48(7):547–552

    Article  PubMed  CAS  Google Scholar 

  • Alia HH, Chen THH, Murata N (1998) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21:232–239

    Article  CAS  Google Scholar 

  • Allard F, Houde M, Krol M, Ivanov A, Huner NPA, Sarhan F (1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol 39:1194–1202

    Article  CAS  Google Scholar 

  • Almeida AM, Silva AB, Arajo SS, Cardoso LA, Santos DM, Torn JM, Silva JM, Paul MJ, Fevereiro PS (2007) Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. Euphytica 154:113–126

    Article  CAS  Google Scholar 

  • Altabella T, Tiburcio AF, Ferrando A (2009) Plant with resistance to low temperature and method of production thereof. Spanish patent application WO2010/004070

    Google Scholar 

  • Anoop N, Gupta AK (2003) Transgenic indica rice cv IR-50 over-expressing Vigna aconitifolia delta (1)-pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. J Plant Biochem Biotechnol 12:109–116

    CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  PubMed  CAS  Google Scholar 

  • Bakhanashvili M, Icekson I, Apelbaum A (1985) Cadaverine formation by specific lysine decarboxylation in Pisum sativum seedlings. Plant Cell Rep 4(6):297–299

    Article  CAS  Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Bieleski RL (1982) Sugar alcohols. In: Loewus FA, Tanner W (eds) Plant carbohydrates I: intracellular carbohydrates, vol 13A, Encyclopedia of Plant physiology. Springer, New York, pp 158–192

    Chapter  Google Scholar 

  • Bieleski RL, Redgwell RJ (1985) Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leaves. Aust J Plant Physiol 12:657–668

    Article  CAS  Google Scholar 

  • Blum A, Munns R, Passioura JB, Turner NC (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051–1053

    PubMed  CAS  Google Scholar 

  • Boggess SF, Koeppe DE (1978) Oxidation of proline by plant mitochondria. Plant Physiol 62:22–25

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4 % of their fresh weight. Planta 211:841–845

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations- making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Cánovas D, Vargas C, Iglesias-Guerra F, Csonka LN, Rhodes D, Ventosa A, Nieto JJ (1997) Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem 272:25794–25801

    Article  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Carolina C, Francisco ACM (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Chen WP, Li PH, Chen THH (2000) Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays. Plant Cell Environ 23:609–618

    Article  CAS  Google Scholar 

  • Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  PubMed  CAS  Google Scholar 

  • Chiang YC, Stushnoff C, McSay AE, Jones ML, Bohnert H (2005) Overexpression of Mannitol-1-phosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in Petunia. J Am Soc Horti Sci 30:605–610

    Google Scholar 

  • Clegg JS (1985) The physical properties and metabolic status of Artemia cysts at low water contents: the water replacement hypothesis. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Cornell University Press, New York, pp 169–187

    Google Scholar 

  • Csonka LN, Gelvin SB, Goodner BW, Orser CS, Siemieniak D, Slightom JL (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64:199–205

    Article  PubMed  CAS  Google Scholar 

  • Das Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt tolerant L myo-inositol 1 phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    Article  PubMed  CAS  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    Article  PubMed  CAS  Google Scholar 

  • De Ronde JA, Spreeth MH, Cress WA (2000) Effect of antisense-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul 32:13–26

    Article  Google Scholar 

  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Delauney AJ, Hu CA, Kishor BP, Verma DP (1993) Cloning of ornithine delta amino transferase cDNA from Vigna aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    PubMed  CAS  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  PubMed  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycinebetaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, David Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17–27

    Article  Google Scholar 

  • Eleutherio ECA, Araujo PS, Panek AD (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596

    Article  PubMed  CAS  Google Scholar 

  • Elthon TE, Stewart CR (1981) Sub-mitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol 67:780–784

    Article  PubMed  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • FAO (2008) Soaring food prices: facts, perspectives, impacts and actions required. Document HLC/08/INF/1 prepared for the High-level conference on world food security: the challenges of climate change and bioenergy, June 3–5, Rome, pp. 3–5

    Google Scholar 

  • Fernie A, Willmitzer L, Trethewey R (2002) Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci 7:35–41

    Article  PubMed  CAS  Google Scholar 

  • Frova C, Krajewski P, Di Fonzo N, Villa M, Sari-Gorla M (1999) Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behavior in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Galinski EA, Pfeiffer HP, Trüper HG (1985) 1,4,5,6,-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, a novel cyclic acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149:135–139

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YC, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Gerats AGM, Kaye C, Collins C, Malmberg ML (1988) Polyamine levels in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol 86:390–393

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 51:26–33

    Article  Google Scholar 

  • Goddijn OJM, Van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RWHH, De Graaf PTHM, Poels J, Van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  PubMed  CAS  Google Scholar 

  • Göller K, Ofer A, Galinski EA (1998) Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett 161:293–300

    Article  PubMed  Google Scholar 

  • Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5:149–153

    Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon DO, Gage DA (1994) Osmoprotective compounds of the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A 91:306–310

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hideki N, Kazuya Y, Hisayo O, Yoshikatsu M, Atsuhiko S (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247

    Article  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaou S (2005) Over expression of 1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Holmström KO, Mantyala E, Welin B, Mandal A, Palva TE, Tunnela O, Londsborough J (1996) Drought tolerance in tobacco. Nature 379:683–684

    Article  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. J Exp Bot 51:177–185

    Article  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of delta1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that over expresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci U S A 89:9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Over expression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed  CAS  Google Scholar 

  • Hur J, Hong Jong K, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Y, Wada K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  • Ikuta S, Mamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    PubMed  CAS  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50(10):1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Selvaraj G (1997) Molecular genetic improvement of salt tolerance in plants. Biotechnol Annu Rev 3:245–267

    Article  CAS  Google Scholar 

  • Jang I, Oh S, Seo J, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for Trehalose-6-Phosphate synthase and Trehalose-6-Phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  CAS  Google Scholar 

  • Janowitz T, Kneifel H, Piotrowski M (2003) Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett 544:258–261

    Article  PubMed  CAS  Google Scholar 

  • Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol 95:1461–1468

    PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Eshinimaev BT, Suzina NE, Nikitin D, Solonin A, Lin JL, McDonald IR, Murrell JC, Trotsenko YA (2001) Taxonomic characterization of new alkaliphilic and alkali tolerant methanotrophs from soda lakes of the Southeastern transbaikal region and description of Methylomicrobium buryatense sp. Syst Appl Microbiol 24:166–176

    Article  Google Scholar 

  • Kanapathipillai M, Lentzen G, Sierks M, Park CB (2005) Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s β-amyloid. FEBS Lett 579:4775–4780

    Article  PubMed  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616

    Article  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Palva ET, Patrick VD, Kjell-Ove H (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S (2004) Over expression of ­spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Environ 31:1701–1716

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao G-H, Hu CAA, Verma DPS (1995) Over expression of delta-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kochetov AV, Titov SE, Kolodyazhnaya YS, Komarova ML, Koval VS, Makarova NN, Il’yinskyi YY, Trifonova EA, Shumny VK (2004) Tobacco transformants bearing antisense suppressor of proline dehydrogenase gene are characterized by higher proline content and cytoplasm osmotic pressure. Russ J Genet 40:216–218

    Article  CAS  Google Scholar 

  • Konstantinova T, Pavanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Potato plants expressing antisense and sense SAMDC transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed Betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 135:2843–2854

    Article  CAS  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Kuznetsov Vl V, Shevyakova NI (1999) Proline under stress conditions: biological role, metabolism, and regulation. Russ J Plant Physiol 46:321–336

    Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    Article  CAS  Google Scholar 

  • LaRosa PC, Rhodes D, Rhodes JC, Bressan RA, Csonka LN (1991) Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered D1-pyrroline-5-carboxylate reductase. Plant Physiol 96:245–250

    Article  PubMed  CAS  Google Scholar 

  • Lerma C, Hanson AD, Rhodes D (1988) Oxygen-18 and deuterium labeling studies of choline oxidation by spinach and sugar beet. Plant Physiol 88:695–702

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Dijck PV, Thevelein JM (2001) An unexpected plethora of trehalose biosynthetic genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    Article  PubMed  CAS  Google Scholar 

  • Lilius G, Holmberg N, Bülow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180

    Article  CAS  Google Scholar 

  • Liu Q, Zhang Y, Shouyi C (2000) Plant protein kinase genes induced by drought, high salt and cold stresses. Chin Sci Bull 45:1153–1157

    Article  CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Loescher WH, Tyson RH, Everard JD, Redgwell RJ, Bieleski RL (1992) Mannitol synthesis in higher plants: evidence for the role and characterization of a NADPH-dependent mannose-6-phosphate reductase. Plant Physiol 98(4):1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA, Murthy PN (2000) Myo-inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Botany 63:378–384

    Article  CAS  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, PardhaSardhi P (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652

    Article  CAS  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt tolerant L myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb) Tateoka, a halophytic wild rice. J Biol Chem 279:28539–28552

    Article  PubMed  CAS  Google Scholar 

  • Mani S, Van de Cotte B, Van Montagu M, Verbruggen N (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128:73–83

    Article  PubMed  CAS  Google Scholar 

  • Marina M, Maiale SJ, Rossi FR, Romero MF, Rivas EI, Gárriz A, Ruiz OA, Pieckenstain FL (2008) Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiol 147(4):2164–2178

    Article  PubMed  CAS  Google Scholar 

  • Masgrau C, Altabella T, Farrás R, Flores D, Thompson AJ, Besford RT, Tiburcio AF (1997) Inducible over expression of oat arginine decarboxylase in transgenic tobacco plants. Plant J 11:465–473

    Article  PubMed  CAS  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Andrew D, Hanson AD (2000) Metabolic model identifies key constraints on an engineered glycinebetaine synthetic pathway in tobacco. Plant Physiol 124:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mehta RA, Handa A, Li N, Mattoo AK (1997) Ripening activated expression of S-adenosylmethionine decarboxylase increases polyamine levels and influences ripening in transgenic tomato fruits (abstract no.134). Plant Physiol 114:S-44

    Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  PubMed  CAS  Google Scholar 

  • Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Dijck PV, Iturriaga GA (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Moghaieb REA, Tanaka N, Saneoka H, Hussein HA, Yousef SS, Ewada MAF, Aly MAM, Fujika K (2000) Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycinebetaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci Plant Nutr 46:873–883

    Article  CAS  Google Scholar 

  • Moghaieb REA, Tanaka N, Sanoeka H, Murooka Y, Ono H, Morikawa H, Nakamura A, Nguyen NT, Suwa R, Fujita K (2006) Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning. Plant Cell Environ 29:173–182

    Article  PubMed  CAS  Google Scholar 

  • Moghaieb REA, Nakamura A, Saneoka H, Fujita K (2011) Evaluation of salt tolerance in ectoine-transgenic tomato plants (Lycopersicon esculentum) in terms of photosynthesis, osmotic adjustment, and carbon partitioning. GM Crops 2–1:58–65

    Article  Google Scholar 

  • Mohanty C, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2003) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Junior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. Poncirus trifoliate L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Freitas de Campos MK, Portela de Carvalho JFR, Filho JCB, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Planta 130:218–229

    Article  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshida K, Ono H, Murooka Y, Shinmyo A (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Shen B, Bohnert HJ (1998) Salinity tolerance-mechanisms, models and the metabolic engineering of complex traits. Genet Eng 20:153–176

    CAS  Google Scholar 

  • Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycinebetaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G (2000) Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng 2:300–311

    Article  PubMed  CAS  Google Scholar 

  • Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF, Altabella T (2002) Effects of putrescine accumulation in tobacco transgenic plants with different expression of oat arginine decarboxylases. Physiol Planta 114:281–287

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function in the oxygen-evolving photosystem II complex. Photosyn Res 44:243–252

    Article  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Pathan MS, Subudhi PK, Courtois B, Nguyen HT (2004) Molecular dissection of abiotic stress tolerance in sorghum and rice. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 525–569

    Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245(1–4):143–152

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L. J Exp Bot 40:1093–1098

    Article  CAS  Google Scholar 

  • Paul M, Pellny T, Goddijn OJM (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes control levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    PubMed  CAS  Google Scholar 

  • Phillips JR, Oliver MJ, Bartels D (2002) Molecular genetics of desiccation and tolerant systems. In: Black M, Pritchard H (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 319–341

    Chapter  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    Article  CAS  Google Scholar 

  • Piotrowski M, Janowitz T, Kneifel H (2003) Plant C-N Hydrolases and the identification of a plant N-Carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem 278(3):1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Prabhavathi V, Rajam MV (2007) Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts. Plant Sci 173:50–54

    Article  CAS  Google Scholar 

  • Prabhavathi S, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breed 9:137–147

    Article  CAS  Google Scholar 

  • Prasad KVSK, Saradhi PP (2004) Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Sci 166:1197–1212

    Article  CAS  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149

    Article  CAS  Google Scholar 

  • Rafart-Pedros A, Mac Leod MR, Ross HA, McRae D, Tiburcio AF, Davies HD, Taylor M (1999) Manipulation of the S-adenosylmethionine decarboxylase transcript level in potato tubers. Over-expression leads to an increase in tuber number and a change in tuber size distribution. Planta 209:153–160

    Article  CAS  Google Scholar 

  • Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532

    Article  CAS  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought and dessication-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulphur enzyme catalyzing the first step of glycinebetaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Giegenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA (2011) Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15–30

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Ribaut JM, Hosington DA, Deitsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hosington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize, 2. Yield components and marker assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    PubMed  CAS  Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  PubMed  CAS  Google Scholar 

  • Ronan S, Hirokazu T, Hideko N, Laszlo M, Chen THH, Norio M (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycinebetaine. Plant J 36:165–176

    Article  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  PubMed  CAS  Google Scholar 

  • Roosens NH, Bitar FA, Loenders K, Angenon G, Jacobs M (2002) Over expression of ornthine-d-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Rubén A, Teresa A, Francisco M, Cristina B, Matthieu R, Csaba K, Pedro C, Antonio FT (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  Google Scholar 

  • Ruidang Q, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149

    Article  CAS  Google Scholar 

  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859–865

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Jaoua S, Hua XJ, Ardiles W, Van MM, Verbruggen N (1995) Isolation, characterization and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  PubMed  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Severin J, Wohlfarth A, Galinski EA (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138:1629–1638

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997a) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997b) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    PubMed  CAS  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva EV, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabaccum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839

    Article  PubMed  CAS  Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    Article  CAS  Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nat New Biol 236:188–190

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Fleming AJ (1993) A plant gene with homology to D-myo-inositol-3 phosphate synthase is rapidly and spatially upregulated during an abscisic acid induced morphogenic response in Spirodela polyrrhiza. Plant J 4:279–293

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Flores S (1997) Overexpression of d-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopsis. Plant Mol Biol 33:811–820

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  PubMed  CAS  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycinebetaine. J Exp Bot 57:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and lucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806

    Article  CAS  Google Scholar 

  • Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    Article  PubMed  CAS  Google Scholar 

  • Turner NC, Shahal A, Berger JD, Chaturvedi SK, French RJ, Ludwig C, Mannur DM, Singh SJ, Yadava HS (2007) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58:187–194

    Article  PubMed  CAS  Google Scholar 

  • Tyagi A, Sairam RK (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86(3):407–420

    Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi A, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63(3):201–210

    Google Scholar 

  • Verdoy D, Coba De La Pena T, Redondo FJ, Lucas MM, Pueyo JJ (2006) Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ 29:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Verma DPS (1999) Osmotic stress tolerance in plants: role of proline and sulfur metabolisms. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. Austin, RG Landes, pp 153–168

    Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Watson MB, Emory KK, Piatak RM, Malmberg RL (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J 13:231–239

    Article  PubMed  CAS  Google Scholar 

  • Webb KL, Burley JWA (1962) Sorbitol translocation in apple. Science 137:766

    Article  PubMed  CAS  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    Article  CAS  Google Scholar 

  • Wi SJ, Park KY (2002) Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells 13:209–220

    PubMed  CAS  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Over expression of carnation S-adenosylmethionine ­decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. J Gen Microbiol 58:209–217

    CAS  Google Scholar 

  • Wu LQ, Fan ZM, Guo L, Li YQ, Zhang WJ, Qu LJ, Chen ZL (2003) Over-expression of an Arabidopsis delta-OAT gene enhances salt and drought tolerance in transgenic rice. Chin Sci Bull 48:2594–2600

    Article  CAS  Google Scholar 

  • Wyn Jones RG, Storeys R (1978) Salt stress and comparative physiology in the Gramineaell. Glycine betaine and proline accumulation in two salt and water stressed barley cultivar. Aust J Plant Physiol 5:817–829

    Article  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC, Boca Raton, pp 81–109

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1989) Selection for physiological characters—examples from breeding for salt tolerance. In: Flowers TJ, Jackson MB, Jones HG (eds) Plants under stress: biochemistry, physiology and ecology and their application to plant improvement. Cambridge University Press, Cambridge, pp 217–234

    Chapter  Google Scholar 

  • Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byun MO (2000) Genetic engineering of drought-resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10:263–268

    PubMed  CAS  Google Scholar 

  • Yi-Guo S, Bao-Xing D, Wan-Ke Z, Jin-Song Z, Shou-Yi C (2002) AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose-6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Majee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saxena, S.C., Kaur, H., Verma, P., Petla, B.P., Andugula, V.R., Majee, M. (2013). Osmoprotectants: Potential for Crop Improvement Under Adverse Conditions. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_9

Download citation

Publish with us

Policies and ethics