Skip to main content

APETALA2 Gene Family: Potential for Crop Improvement Under Adverse Conditions

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress
  • 2547 Accesses

Abstract

Crop plants are exposed to many adverse conditions like biotic and abiotic stresses which affect their yield. Transcription factors which play important roles in the expression of stress-responsive genes, serve as valuable source for improving stress tolerance of crop plants. APETALA2/ethylene response element-binding protein (AP2/EREBP) transcription factor family is one of the major groups among the TF families in Arabidopsis. AP2 family members have been implicated in plant growth development as well as in stress signaling network. The DREB (dehydration-responsive element binding) subfamily proteins interact with C-repeat or dehydration response elements to regulate low-temperature and/or water deficit responsive genes, whereas, the ERF (ethylene-responsive factors) subfamily proteins interact with ethylene response elements (ERE) or GCC box to regulate the expression of pathogenesis-related genes. However, some DREB and ERF transcription factors are known to mediate cross talk between biotic and abiotic stress signaling pathways. Functional characterization of AP2 family genes has demonstrated usefulness of these genes in enhancing biotic/abiotic stress resistance/tolerance not only in model plants, but also in crop plants like rice, maize, wheat, barley, and soybean. Transgenic expression of a single AP2 TF has lead to improved tolerance to multiple stresses like salinity, drought, and heat stress and pathogen infection. Therefore engineering of AP2 TFs seems to be a valuable tool towards achieving enhanced crop productivity under adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37(2):1125–35

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA binding activity. Mol Genet Genomics 277(2):189–198

    Article  PubMed  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, Van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16(9):2463–2480

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5641):653–657

    Article  PubMed  CAS  Google Scholar 

  • Andeani JK, Mohsenzadeh S, Mohabatkar H (2009) Isolation and characterization of partial DREB gene from four Iranian Triticum aestivum cultivars. World J Agri Sci 5(5):561–566

    Article  PubMed  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’- region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24(5):701–713

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Hussain SS (2008) Current status and implications of engineering drought tolerance in plants using transgenic approaches. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 3(020):17

    Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnol 23(2):169–177

    Article  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149(1):95–101

    Article  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7(2):202–209

    Article  PubMed  CAS  Google Scholar 

  • Büttner M, Singh KB (1997) Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 94(11):5961–5966

    Article  PubMed  Google Scholar 

  • Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun 401(2):238–44

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353(2):299–305

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot 60(1):121–35

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBSLRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38(5):810–822

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17(8):1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129(4):1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Zheng HC, Zhang YX, Chai TY (2008) Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in Tobacco. Plant Sci 174(2):156–164

    Article  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow M (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101(42):15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to ­overcome biotic and abiotic stress constraints in legume. Euphytica 147(1–2):1–24

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Martín J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J (2005) Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol 139(3):1483–1494

    Article  PubMed  CAS  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    Article  PubMed  CAS  Google Scholar 

  • Dong CJ, Liu JY (2010) The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10:47

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763

    Article  PubMed  CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8(2):155–168

    PubMed  CAS  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–78

    Article  PubMed  CAS  Google Scholar 

  • Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59(6):853–868

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-­responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12(3):393–404

    PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  PubMed  CAS  Google Scholar 

  • Guo A, He K, Liu D et al (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10):2568–2569

    Article  PubMed  CAS  Google Scholar 

  • Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7(4):465–471

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  PubMed  CAS  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273(31):26857–26861

    Article  PubMed  CAS  Google Scholar 

  • Hinz M, Wilson IW, Yang J et al (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153(2):757–772

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130(2):618–626

    Article  PubMed  CAS  Google Scholar 

  • Hu YX, Wang YX, Liu XF, Li JY (2004) Arabidopsis RAVI is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res 14(1):8–15

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Liu JY (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta 1759(6):263–269

    Article  PubMed  CAS  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Progr 27(2):297–306

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T et al (2006) Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG et al (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, Denboer BGW, van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene apetala 2. Plant Cell 6(9):1211–1225

    PubMed  CAS  Google Scholar 

  • Jung J, Won SY, Suh SC et al (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225(3):575–88

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Seo YS, Walia H et al (2010) The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152(3):1674–1692

    Article  PubMed  CAS  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27(2):470–478

    Article  PubMed  CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1/ SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19(4):1278–1294

    Article  PubMed  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104(39):15270–15275

    Article  PubMed  CAS  Google Scholar 

  • Karin M (1990) Too many transcription factors: positive and negative interactions. New Biol 2(2):126–131

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  PubMed  CAS  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30(6):679–89

    Article  PubMed  CAS  Google Scholar 

  • Krishnaswamy S, Verma S, Rahman MH, Kav NN (2011) Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6 L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 75(1–2):107–127

    Article  PubMed  CAS  Google Scholar 

  • Krizek B (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150(4):1916–1929

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S, Borg-Franck M (1992) Structure and expression of kin 2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19(4):689–692

    Article  PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol 15(1):137–144

    Article  PubMed  CAS  Google Scholar 

  • Lang V, Palva ET (1992) The expression of a rab-related gene rabl8 is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol Biol 20(5):951–962

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55(1):61–81

    Article  PubMed  CAS  Google Scholar 

  • Li C-W, Su R-C, Cheng C-P, Sanjaya, You S-J, Hsieh T-H, Chao T-C, Chan M-T (2011) Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156(1):213–227

    Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS et al (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110(8):1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Lim CJ, Hwang JE, Chen H et al (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun 362(2):431–436

    Article  PubMed  CAS  Google Scholar 

  • Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1(1):42–57

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    PubMed  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S et al (2009) Metabolic pathways involved in cold ­acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150(4):1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283(2):185–196

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959

    Article  PubMed  CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–49

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10(23):3018–27

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozak IK (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126(1):62–71

    Article  CAS  Google Scholar 

  • Nikolov DB, Burley SK (1997) RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A 94(1):15–22

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104(52):21002–21007

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Nat Acad Sci U S A 101(11):3985–3990

    Article  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SIK, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. J Plant Biotechnol 5(5):646–656

    Article  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim M, Kim YK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(2):341–351

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    PubMed  CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423(3):324–328

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    PubMed  CAS  Google Scholar 

  • Passarinho P, Ketelaar T, Xing M, van Arkel J, Maliepaard C, Hendriks MW, Joosen R, Lammers M, Herdies L, den Boer B, van der Geest L, Boutilier K (2008) BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68(3):225–37

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45(8):1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Qin QL, Liu JG, Zhang Z et al (2007) Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol Breeding 19(4):329–340

    Article  CAS  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8(4):476–488

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103(29):11081–11085

    Article  PubMed  CAS  Google Scholar 

  • Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinform 8:42

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    PubMed  CAS  Google Scholar 

  • Riechmann JL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290(3):998–1009

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell 18(5):1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F et al (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water stress- responsive and heat-stress-responsive gene expression. Proc Nat Acad Sci USA 103(49):18828–18833

    Article  CAS  Google Scholar 

  • Saleh A, Pagés M (2003) Plant AP2/ERF transcription factors. Genetika 35(1):37–50

    Article  CAS  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA et al (2005) The effect of overexpression of two Brassica CBF/ DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46(9):1525–1539

    Article  PubMed  CAS  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E et al (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3(3):217–223

    PubMed  CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S et al (1988) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low temperature responsive gene expression. Biochem Biophys Res Commun 250(1):161–170

    Article  Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61(6):897–915

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139(2):713–721

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94(3):1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Yu JP, Chen F et al (2008) TINY, a dehydrationresponsive element (DRE)-binding protein-like transcription factor connecting the DRE and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem 283(10):6261–6271

    Article  PubMed  CAS  Google Scholar 

  • Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration- responsive element. J Integr Plant Biol 47(4):467–476

    Article  CAS  Google Scholar 

  • Trujillo L, Menendez C, Ochogavia ME et al (2009) Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor. Biotechnol Apl 26(2):168–171

    Google Scholar 

  • Tsutsui T, Kato W, Asada Y et al (2009) DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122(6):633–643

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41(2):195–211

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL, An XM, Li B et al (2008) Identification and characterization of CBF/DREB1-related genes in Populus hopeiensis. Forest Stud China 10(3):143–148

    Article  CAS  Google Scholar 

  • Wei G, Pan Y, Lei J, Zhu YX (2005) Molecular cloning, phylogenetic analysis, expressional prowling and in vitro studies of TINY2 from Arabidopsis thaliana. J Biochem Mol Biol 38(4):440–446

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–8

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map in the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263(4):681–689

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Ni ZY, Li ZY (2009) Isolation and functional characterization of HvDREB1-a gene encoding a dehydration- responsive element binding protein in Hordeum vulgare. J Plant Res 122(1):121–130

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280(6):497–508

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M et al (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65(6):719–732

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Narasimhan ML, Samson T et al (1998) A nitrilase-like protein interacts with GCC box ­DNA-binding proteins involved in ethylene and defense responses. Plant Physiol 118(3):867–874

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6(2):25l–264

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58(4):585–596

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 56(1):202–212

    Article  CAS  Google Scholar 

  • Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPFl confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136(1):2862–2874

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Chen M, Li L et al (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42(5):689–707

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64(3):265–278

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Li N, Gao F, Yang AF, Zhang JR (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breeding 26(3):455–465

    Article  CAS  Google Scholar 

  • Zhao JS, Ren W, Zhi DY, Wang L, Xia GM (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26(9):1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Zhao TJ, Sun S, Liu Y et al (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281(16):10752–10759

    Article  PubMed  CAS  Google Scholar 

  • Zhuang J, Cai B, Peng RH et al (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371(3):468–474

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat Kav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krishnaswamy, S., Verma, S., Rahman, M.H., Kav, N. (2013). APETALA2 Gene Family: Potential for Crop Improvement Under Adverse Conditions. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_8

Download citation

Publish with us

Policies and ethics