Skip to main content

Can G-Proteins be the Key Proteins for Overcoming Environmental Stresses and Increasing Crop Yield in Plants?

  • Chapter
  • First Online:

Abstract

Global climate change is bringing with it many environmental maladies which are not only affecting the human life but also putting great influence on the plants in the form of abiotic and biotic stresses. It is a challenge in front of present scientists to look for the useful genes and tools that can reverse the struggle of plants to survive in the stressful conditions. G-protein-coupled receptor (GPCR), regulator of G-protein signaling (RGS) proteins, and G-proteins are some of the tools whose potential is gaining attention day by day. This system works in the similar fashion as the sensor-effector proteins acting right from perception of signal till the sensitizing effectors and bringing about ultimate change for the benefit of the organisms. GPCR/RGS being the probable receptors are bound to the G-proteins and cause them to dissociate from them after perceiving hormonal and stress signals. Subsequently, these proteins interact with other cellular proteins and result in the regulation of many stress-responsive genes. In this chapter, we discuss the stress in general, followed by the role of GPCR and G-proteins in biological processes including those that are related to environmental stresses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517

    Article  PubMed  CAS  Google Scholar 

  • Armstrong F, Blatt MR (1995) Evidence for K+ channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor mimetic The. Plant J 8:187–198

    Article  CAS  Google Scholar 

  • Arshavsky VY, Dumke CL, Bownds MD (1992) Noncatalyticc GMP binding sites of amphibian rod cGMP phosphodiesterase control interaction with its inhibitory γ-subunits. A putative regulatory mechanism of the rod photoresponse. J Biol Chem 267:24501–24507

    PubMed  CAS  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  PubMed  CAS  Google Scholar 

  • Bähler J, Peter M (2000) Cell polarity in yeast. In: Drubin DG (ed) Frontiers in molecular biology: cell polarity. Oxford University Press, Oxford

    Google Scholar 

  • Beffa R, Szell M, Meuwly P, Pay A, Vogeli-Lange R, Metraux JP, Neuhaus G, Meins F Jr, Nagy F (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 14:5753–5761

    PubMed  CAS  Google Scholar 

  • Berman DM, Kozasa T, Gilman AG (1996) The GTPase activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem 271:27209–27212

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Rodbell M (1969) Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem 224:3477–3482

    Google Scholar 

  • Bourne HR, Coffino P, Tompkins GM (1975) Selection of a variant lymphoma cell deficient in adenylate cyclase. Science 187:750–752

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541

    PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994a) Cyclic GMP and calcium mediate phytochromephototransduction. Cell 77:73–81

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua NH (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8:2188–2202

    Article  PubMed  CAS  Google Scholar 

  • Calenberg M, Brohsonn U, Zedlacher M, Kreimer G (1998) Light and Ca2+−modulated GTPase in the eyespot apparatus of a flagellate green alga. Plant Cell 10:91–103

    CAS  Google Scholar 

  • Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 75:4155–4159

    Article  PubMed  CAS  Google Scholar 

  • Cavalli A, Druey KM, Milligan G (2000) The regulator of G protein signalling RGS4 selectively enhances alpha 2A-adreoreceptor stimulation of the GTPase activity of Go1alpha and Gi2alpha. J Biol Chem 275:23693–23699

    Article  PubMed  CAS  Google Scholar 

  • Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, McCurdy DW, Assmann SM, Botella JR (2011) An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K-channel regulation and morphological development in Arabidopsis thaliana. http://www.ncbi.nlm.nih.gov/pubmed/21575088 Plant J 67:840–51

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol 389:338–350

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-Tran membrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 13:907–915

    Article  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  PubMed  CAS  Google Scholar 

  • Choudhury SR, Westfall CS, Pandey S (2012) The RGS proteins add to the diversity of soybean heterotrimeric G-protein signaling. Plant Signal Behav. 1; http://www.ncbi.nlm.nih.gov/pubmed/22899066 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ (2002) GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc Natl Acad Sci USA 99:4736–4741

    Article  PubMed  CAS  Google Scholar 

  • Cowan CW, Wensel TG, Arshavsky VY (2000) Enzymology of GTPase acceleration in phototransduction. Methods Enzymol 315:524–538

    Article  PubMed  CAS  Google Scholar 

  • De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235–271

    Article  PubMed  Google Scholar 

  • Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, Miedes E, Fernández PV, Jordá L, Hernández-Blanco C, Sánchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A (2012) Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol Plant 5:98–114

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielie T, Bolanowski MA, Bennett CD, Rands E, Diehl RE (1986) Cloning of the gene and c DNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  PubMed  CAS  Google Scholar 

  • Estelle M (1998) Cytokinin action: two receptors better than one? Curr Biol 8:539–541

    Article  Google Scholar 

  • Etheridge N, Trusov Y, Verbelen JP, Botella JR (1999) Characterization of ATDRG1, a member of a new class of GTP-binding proteins in plants. Plant Mol Biol 39:1113–1126

    Article  PubMed  CAS  Google Scholar 

  • Fairley-Grenot KA, Assmann SM (1991) Evidence for G-protein regulation of inward K+ channel current in guard cells of fava bean. Plant Cell 3:1037–1044

    PubMed  CAS  Google Scholar 

  • García DE, Li B, García-Ferreiro RE, Hernández-Ochoa EO, Yan K, Gautam N, Catterall WA, Mackie K, Hille B (1998) G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J Neurosci 18:9163–9170

    PubMed  Google Scholar 

  • Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B (2007) Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8:260

    Article  PubMed  CAS  Google Scholar 

  • Gotta M, Ahringer J (2001) Distinct roles for Galpha and G-beta-gamma in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 3:297–300

    Article  PubMed  CAS  Google Scholar 

  • Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008) D-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Han M (1999) G-protein signaling network mediated by an RGS protein. Genes Dev 13:1763–1767

    Article  PubMed  CAS  Google Scholar 

  • Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Hucho F and Buchner K (1997) Signal transduction and protein kinases: the long way from the plasma membrane into the nucleus. Naturwissenschaften. 84, 281–90

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Dirk KH (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  CAS  Google Scholar 

  • Huw D, Jones HD, Smith SJ, Desikan R, Plakidou-Dymock S, Alison Lovegrove A, Hooley R (1998) Heterotrimeric G proteins are implicated in gibberellin induction of α-amylase gene expression in wild oat aleurone. Plant Cell 10:245–253

    Google Scholar 

  • Im MJ, Graham RM (1990) A novel guanine nucleotide-binding protein coupled to the a1-adrenergic receptor. I. Identification by photolabeling of membrane and ternary complex preparations. J Biol Chem 265:18952–18960

    PubMed  CAS  Google Scholar 

  • Jamora C, Takizawa PA, Zaarour RF, Denesvre C, Faulkner DJ, Malhotra V (1997) Regulation of Golgi structure through heterotrimeric G proteins. Cell 91:617–626

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2002) G-protein-coupled signaling in Arabidopsis. Curr Opin Plant Biol 5(5):402–407

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578

    Article  PubMed  CAS  Google Scholar 

  • Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiol 142:1559–1573

    Article  PubMed  CAS  Google Scholar 

  • Kelly WB, Esser JE, Schroeder JI (1995) Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J 8:479–489

    Article  CAS  Google Scholar 

  • Leaney JL, Tinker A (2000) The role of members of the pertussis toxin sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci USA 97:5651–5656

    Article  PubMed  CAS  Google Scholar 

  • Lease KA, Wen J, Li J, Doke JT, Liscum E, Walker JC (2001) A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell 13:2631–2641

    PubMed  CAS  Google Scholar 

  • Lee YRJ, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein (AtXLG1): A new class of G-protein. Plant Mol Biol 40:55–64

    Article  PubMed  CAS  Google Scholar 

  • Legendre L, Heinstein PF, Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267: 20140–22014

    PubMed  CAS  Google Scholar 

  • Legendre L, Heinstein PF, Crain RC, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    PubMed  CAS  Google Scholar 

  • Lei Q, Jones MB, Talley EM, Schrier AD, McIntire WE, Garrison JC, Bayliss DA (2000) Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein beta gamma subunits. Proc Natl Acad Sci USA 97:9771–9776

    Article  PubMed  CAS  Google Scholar 

  • Lein W, Saalbach G (2001) Cloning and direct G-protein regulation of phospholipase D from tobacco. Biochim BiophyS Acta 1530:172–183

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Yanofsky M, Meyerowitz EM (1990) Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA 87:3821–3825

    Article  PubMed  CAS  Google Scholar 

  • Makino ER, Handy JW, Li T, Arshavsky VY (1999) The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5G protein subunit. Proc Natl Acad Sci USA 96:1947–1952

    Article  PubMed  CAS  Google Scholar 

  • Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA. Proc Natl Acad Sci USA 97: 14784–14788

    Article  PubMed  CAS  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525

    PubMed  CAS  Google Scholar 

  • Mirbahar RB, Laidman DL (1982) Gibberellic acid-stimulated alpha-amylase secretion and phospholipid metabolism in wheat aleurone tissue. Biochem J 208:93–100

    PubMed  CAS  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory S, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with Phospholipase C. Plant J 52:656–669

    Article  CAS  Google Scholar 

  • Montell C (2000) PLC fills a GAP in G-protein-coupled signalling. Nat Cell Biol 2:82–83

    Article  CAS  Google Scholar 

  • Munnik T, Arisz SA, de Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    PubMed  CAS  Google Scholar 

  • Neer EJ (1995) Heterotrimeric G-proteins: organizers of transmembrane signals. Cell 80:249–257

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Kern R, Chua NH (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73:937–952

    Article  PubMed  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science (Wash DC) 296:1636–1639

    Article  CAS  Google Scholar 

  • Nilson SE, Assmann SM (2010) The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency. http://www.ncbi.nlm.nih.gov/pubmed/20200073 Plant Physiol.152:2067–77

    Article  PubMed  CAS  Google Scholar 

  • Niu J, Scheschonka A, Druey KM, Davis A, Reed E, Kolenko V, Bodnar R, Voyno-Yasenetskaya T, Du X, Kehrl J, Dulin NO (2002) RGS3 interacts with 14-3-3 via the N-terminal region ­distinct from the RGS (regulator of G-protein signaling) domain. Biochem J 365:677–684

    PubMed  CAS  Google Scholar 

  • Okamoto H, Matsui M, Deng XW (2001) Overexpression of the heterotrimeric G-protein α-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation. Plant Cell 13:1639–1652

    PubMed  CAS  Google Scholar 

  • Okamoto H, Gobel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The α-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. J Exp Bot 60:1991–2003

    Article  PubMed  CAS  Google Scholar 

  • Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y (2009a) Function of the alpha subunit of rice heterotrimeric G-protein in brassinosteroid signaling. Plant Cell Physiol 50:161–172

    Article  PubMed  CAS  Google Scholar 

  • Orly J, Schramm M (1976) Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion. Proc Natl Acad Sci USA 73:4410–4414

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Polans AS, Baehr W, Ames JB (2000) Ca (2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 22:337–350

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development. Plant Physiol 141:243–256

    Article  PubMed  CAS  Google Scholar 

  • Peskan-Berghofer T, Neuwirth J, Kusnetsov V, Oelmeller R (2005) Suppression of heterotrimeric G-protein β-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta 220:737–746

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer T, Helmreish EJM (1975) Activation of pigeon erythrocytes membrane adenylate cyclase by guanyl nucleotide analogues and separation of nucleotide-binding protein. J Biol Chem 250:867–876

    PubMed  CAS  Google Scholar 

  • Plakidou-Dymock S, Dymock D, Hooley R (1998) A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr Biol 8:315–324

    Article  PubMed  CAS  Google Scholar 

  • Rall K, Sutherland EW, Berthet J (1957) The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagons on the reactivation of phosphorylase in liver homogenates. J Biol Chem 224:463–3475

    PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagons sensitive adenylyl cyclase in plasma membrane of rat liver. V. An obligatory role of guanyl nucleotides in glucagons action. J Biol Chem 246:1877–1882

    PubMed  CAS  Google Scholar 

  • Romero LC, Lam E (1993) Guanine nucleotide binding protein involvement in early steps of phytochrome regulated gene expression. Proc Natl Acad Sci USA 90:1465–1469

    Article  PubMed  CAS  Google Scholar 

  • Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Kataoka R, Dingus J, Wilcox M, Hildebrandt J, Lanier SM (1995). Factors determining specificity of signal transduction by G-protein-coupled receptors. J. Biol. Chem. 270, 15269–15276

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    PubMed  CAS  Google Scholar 

  • Shorr RGL, Lefkowitz RJ, Caron MG (1981) Purification of the β-adrenergic receptor. Identification of the hormone-binding subunit. J Biol Chem 256:5820–5826

    PubMed  CAS  Google Scholar 

  • Snow BE, Krumins AM, Brothers GM, Lee S, Wall MA, Chung S, Mangion J, Arya S, Gilman AG, Siderovske DP (1998) A G protein g subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gb5 subunits. Proc Natl Acad Sci USA 95:13307–13312

    Article  PubMed  CAS  Google Scholar 

  • Snow BE, Betts L, Mangion J, Sondek J, Siderovski DP (1999) Fidelity of G protein b-subunit association by the G protein g-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci USA 96:6489–6494

    Article  PubMed  CAS  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307–13312

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Yu JP, Chen F, Zhao TJ, Fang XH, Li YQ, Sui SF (2008) TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem 283:6261–6271

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particle. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science (Wash DC) 254:1500–1503

    Article  CAS  Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsa-GTPgS. Science 278:1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    Article  PubMed  CAS  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant 129:897–907

    CAS  Google Scholar 

  • Urano D, Jones JC, Wang H, Matthews M, Bradford W, Bennetzen JL, Jones AM (2012) G protein activation without a GEF in the plant kingdom. http://www.ncbi.nlm.nih.gov/pubmed/22761582 PLoS Genet. 8:e1002756.

  • Vaugham M (1998) Signaling by heterotrimeric G proteins minireview series. J Biol Chem 273:667–668

    Article  Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein a subunit is involved in rice brassinosteroid response. Cell Res 16:916–922

    Article  PubMed  CAS  Google Scholar 

  • Warpeha KMF, Hamm HE, Rasenick MM, Kaufman LS (1991) A blue-light activated GTP binding protein in the plasma membrane of etiolated pea. Proc Natl Acad Sci USA 88:8925–8929

    Article  PubMed  CAS  Google Scholar 

  • Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR (2002) A PtdInsP(3)- and Rho-GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513

    Article  PubMed  CAS  Google Scholar 

  • Weiss CA, Huang H, Ma H (1993) Immunolocalization of the G-protein alpha subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell 5:1513–1528

    PubMed  CAS  Google Scholar 

  • Yarden Y, Rodriguez H, Wong SK, Brandt DR, May DC, Burnier JR, Harkinns RN, Chen EY, Ramachandran J, Ullrich A (1986) The avian beta-adrenergic receptor: primary structure and membrane topology. Proc Natl Acad Sci 83:6795–6799

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Neo SY, Han J, Yaw LP, Lin SC (1999) RGS16 attenuates G-αq-dependent p38 mitogen-activated protein kinase activation by platelet-activating factor. J Biol Chem 274:2851–2857

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hu G, Cheng Y, Huang J (2008a) Heterotrimeric G protein alpha and beta subunits antagonistically modulate stomatal density in Arabidopsis thaliana. Dev Biol 324:68–75

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, He SY, Assmann SM (2008b) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–996

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wei Q, Wu W, Cheng Y, Hu G, Hu F, Sun Y, Zhu Y, Sakamoto W, Huang J (2009) Activation of the heterotrimeric G-protein α-subunit gpa1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J 58:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells. J Exp Bot 62:2371–2379

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric g-protein α-subunit through a motif analogous to the dry motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RR, Ahringer J, van Luenen HGAM, Rushfort A, Anderson P, Plasterk RHA (1996) G ­proteins are required for spatial orientation of early cell cleavage in C. elegans embryos. Cell 86:1–20

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grant Commission and Department of Science and Technology, New Delhi, India, for funding their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhardwaj, D., Lakhanpaul, S., Tuteja, N. (2013). Can G-Proteins be the Key Proteins for Overcoming Environmental Stresses and Increasing Crop Yield in Plants?. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_17

Download citation

Publish with us

Policies and ethics