Skip to main content

Plant Pathogen Interactions: Crop Improvement Under Adverse Conditions

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Alleviating the crop loss due to biotic stress is the primary aim of plant biologists to achieve sustainable evergreen revolution in order to feed rapidly growing population. In nature, continuous evolution of plants while interacting with pathogens has generated a complex immune system that consists of preformed barriers and induced responses. The induced responses are further subdivided based upon the recognition of microbe-associated molecular patterns and effectors produced by pathogens; however, overlap exists between the downstream signaling pathways. In last decade, great deal of information about molecular aspects of plant–pathogen interactions has been generated which can be utilized for improving crops through genetic manipulation. Plant breeding has helped in the isolation of species-specific resistance components (R genes) from many plants. The molecular breeding techniques have also helped in pyramiding several components to a single variety, especially QTLs responsible for plant resistance, high yield, and nutritional quality. The identification of nonhost components in model plants and incorporation of genetically modified crops in our cropping system have raised hopes that nonhost resistance can be utilized for generating broad-spectrum pathogen tolerance breaking the barriers of species level resistance. This chapter describes the recent molecular aspects of plant–pathogen interactions focusing on the nonhost resistance components. Additionally, strategies like specific regulation of induced defense responses, manipulation of susceptibility factors, and host-induced gene silencing (HIGS) are discussed. The development of GM crops using such strategies will help in generating higher yields against pathogen infestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic, San Diego

    Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Allen A, Islamovic E, Kaur J, Gold S, Shah D, Smith TJ (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9:857–864

    Article  PubMed  CAS  Google Scholar 

  • Almasia NI, Bazzini AA, Hopp HE, Rovere CV (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338

    Article  PubMed  CAS  Google Scholar 

  • Anuradha S, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    Article  PubMed  CAS  Google Scholar 

  • Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zhou Y, Zou Y, Yu Z, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, MacDonald-Comber Petétot J, Métraux JP, Nawrath C (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158–2168

    Article  PubMed  CAS  Google Scholar 

  • Bharathi Y, Kumar SV, Pasalu IC, Balachandran SM, Reddy VD, Rao KV (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152:63-71

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2:287–294

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immunity signaling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, Soberon M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573–579

    Article  PubMed  CAS  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nurnberger T (2002) Pep1-13, a plant defense-inducing pathogen associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688

    Article  PubMed  CAS  Google Scholar 

  • Bulman SR (2006) Testing the effect of in planta RNA silencing on Plasmodiophora brassicae infection. Ph.D thesis. Lincoln University, Chester County

    Google Scholar 

  • Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT (2008) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617

    Article  PubMed  CAS  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  PubMed  CAS  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  PubMed  CAS  Google Scholar 

  • Carrillo L, Martinez M, Ramessar K, Cambra I, Castanera P, Ortego F, Diaz I (2011) Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep 30:101–112

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  PubMed  CAS  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

    Article  PubMed  CAS  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2008) The cuticle: not only a barrier for plant defense. Plant Signal Behav 3:142–144

    Article  PubMed  Google Scholar 

  • Chen L, Zhang ZY, Liang HX, Liu HX, Du LP, Xu H, Xin Z (2008) Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot 59:4195–4204

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ronald PC (2011) Innate immunity in rice. Trends Plant Sci 16:451–459

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tian JC, Shen ZC, Peng YF, Hu C, Guo YY, Ye GY (2010b) Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. J Econ Entomol 103:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  PubMed  CAS  Google Scholar 

  • Chibucos MC, Tseng TT, Setubal JC (2009) Describing commonalities in microbial effector delivery using the Gene Ontology. Trends Microbiol 17:312–319

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Goaker G, Day B, Staskawicz BJ (2006) Host-Microbe interactions: shaping the evolution of the plant immune system. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Choi MS, Kim YH, Park HM, Seo BY, Jung JK, Kim ST, Kim MC, Shin DB, Yun HT, Choi IS, Kim CK, Lee JY (2009) Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown plant hopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28:131–137

    Article  PubMed  CAS  Google Scholar 

  • Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14:521–529

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Plant Pathol 48:269–291

    CAS  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:716–720

    Article  PubMed  CAS  Google Scholar 

  • Cox KD, Layne DR, Scorza R, Schnabel G (2006) Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta 224:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Höfte H, Callewaert N, Van Breusegem F, Höfte M (2010) Abscisic acid deficiency causes changes in cuticle permeability and composition that influence tomato resistance to Botrytis cinerea. Plant Physiol 154:847–860

    Article  PubMed  CAS  Google Scholar 

  • De Almeida EJ, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opin Biotechnol 16:112–117

    Article  CAS  Google Scholar 

  • De Jonge R, Bolton MD, Thomma BPHJ (2011) How filamentous pathogen co-opt plants: the ins and outs of fungal effector. Curr Opin Plant Biol 14:400–406

    Article  PubMed  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  PubMed  CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnological approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Dodds PN (2010) Genome evolution in plant pathogens. Science 330:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z (2010) Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics 10:215–226

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Ji R, Guo X, Foster SJ, Chen H, Dong C, Liu Y, Hu Q, Liu S (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228:331–340

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Maeda S, Sugano S, Ohtake M, Hayashi N, Ichikawa T, Kondou Y, Kuroda H, Horii Y, Matsui M, Oda K, Hirochika H, Takatsuji H, Mori M (2011) Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice. Plant Biotechnol J 9:466–485

    Article  PubMed  CAS  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2002) Plant disease susceptibility genes? Plant Cell 14:1983–1986

    Article  PubMed  CAS  Google Scholar 

  • Ellis J (2006) Insights into nonhost disease resistance: can they assist disease control in agariculture? Plant Cell 18:523–528

    Article  PubMed  CAS  Google Scholar 

  • Erbs G, Newman MA (2012) The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol Plant Pathol 13:95–104

    Article  PubMed  Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang F, Liu G, Greenshields D, Shen W, Kaminskyj S, Hughes GR, Peng Y, Selvaraj G, Zou J, Wei Y (2009) Analysis of Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development. Mol Plant Microbe Interact 22:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2010) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  Google Scholar 

  • Fliegmann J, Mithofer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative β-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAG, Thomma BPHJ (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156:2255–2265

    Article  PubMed  CAS  Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  PubMed  CAS  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping the silencing pathways for plant biotechnology. Plant Biotechnol J 8:655–677

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Gaulin E, Drame N, Lafitte C, Torto-Alalibo T, Martinez Y, Torregrosa CA, Khatib M, Mazarguil H, Villalba-Mateos F, Kamoun S, Mazars C, Dumas B, Bottin A, Esquerre-Tugaye MT, Rickauer M (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766–1777

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection? Curr Opin Plant Biol 14:415–421

    Article  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plant (subnanomolar concentrations of ergosterol elicit extracellular alkalization in tomato cells). Plant Physiol 107:485–490

    PubMed  CAS  Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interaction. Curr Opin Plant Biol 14:422–428

    Article  PubMed  CAS  Google Scholar 

  • Hok S, Attard A, Keller H (2010) Getting the most from the host: how pathogens force plants to cooperate in disease. Mol Plant Microbe Interact 23:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  CAS  Google Scholar 

  • Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply non-host resistance? Mol Plant Pathol 7:605–610

    Article  PubMed  Google Scholar 

  • Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Article  PubMed  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  PubMed  CAS  Google Scholar 

  • Imamura T, Yasuda M, Kusano H, Nakashita H, Ohno Y, Kamakura T, Taguchi S, Shimada H (2010) Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 19:415–442

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    Article  PubMed  CAS  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, Lorenzo GD, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe Interact 21:171–177

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373-384

    Article  PubMed  CAS  Google Scholar 

  • Jauhar P (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859

    Article  CAS  Google Scholar 

  • Kim JG, Jeon E, Oh J, Moon JS, Hwang I (2004) Mutational analysis of Xanthomonas hairpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186:6239–6247

    Article  PubMed  CAS  Google Scholar 

  • Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareq B, Fritiq B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact 16:115–122

    Article  PubMed  CAS  Google Scholar 

  • Kern MF, Maraschin SF, Endt DV, Schrank A, Vainstein MH, Pasquali G (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160:1933-1946

    Article  PubMed  CAS  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmuller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    Article  PubMed  CAS  Google Scholar 

  • Knepper C, Day B (2010) From perception to activation: the molecular-genetic and biochemical landscape of disease resistance signaling in plants. In: The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J Biol Chem 273:31985–31991

    Article  PubMed  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  PubMed  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Hwang IS, Choi HW, Hwang BK (2008) Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. Plant Physiol 148:1004–1020

    Article  PubMed  CAS  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007b) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    Article  PubMed  CAS  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Leon J, Lamotte O, Metraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed  CAS  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  CAS  Google Scholar 

  • Laquitaine L, Gomes E, Francois J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thevenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol Plant Microbe Interact 19:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Klessig DF, Nurnberger T (2001) A Harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079–1093

    PubMed  CAS  Google Scholar 

  • Lewis JD, Guttman DS, Desveaux D (2009) The targeting of plant cellular systems by injected type III effector proteins. Semin Cell Dev Biol 20:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu X, Dai L, Wang G (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics 34:765–776

    Article  PubMed  Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7:e1001261

    Article  PubMed  CAS  Google Scholar 

  • Lochman J, Mikes V (2006) Ergosterol treatment leads to the expression of a specific set of defense-related genes in tobacco. Plant Mol Biol 62:43–51

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, DeVera ME, Liang X, Tör M, Billiar T (2007) The grateful dead: damage associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  • Lukasik E, Takken FLW (2009) STANDing strong, resistance proteins instigators of plant defense. Curr Opin Plant Biol 12:427–436

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782

    Article  PubMed  CAS  Google Scholar 

  • Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155:1068–1078

    Article  PubMed  CAS  Google Scholar 

  • Marshall A (2010) 2nd-generation GM traits progress. Nat Biotech 28:306

    Article  CAS  Google Scholar 

  • Mendoza AM, Berndt P, Djamei A, Linne U, Marahiel M, Vranes M, Kämper J, Kashmann R (2009) Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71:895–911

    Article  CAS  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Garcia-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation of 21st century crop improvement. Plant Physiol 147:969–977

    Article  PubMed  CAS  Google Scholar 

  • Mourgues F, Brisset M-N, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol 6:203–210

    Article  Google Scholar 

  • Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system ­network. Science 333:596–601

    Article  PubMed  CAS  Google Scholar 

  • Nishimura MT, Dangl JL (2010) Arabidopsis and the plant immune system. Plant J 61:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Niu JH, Jian H, Xu JM, Guo YD, Liu Q (2010) RNAi technology extends its reach: engineering plant resistance against harmful eukaryotes. Afr J Biotechnol 9:7573–7582

    CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  PubMed  CAS  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29:943–954

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D (2010) CaMsrB2, Pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant physiol 154:245–261

    Article  PubMed  CAS  Google Scholar 

  • Osman H, Vauthrin S, Mikes V, Milat ML, Panabieres F, Marais A, Brunie S, Maume B, Ponchet M, Blein JP (2001) Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol Biol Cell 12:2825–2834

    PubMed  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928

    Article  PubMed  CAS  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    Article  PubMed  CAS  Google Scholar 

  • Patkar RN, Chattoo BB (2006) Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171

    Article  CAS  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Piron F, Nicolai M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A (2010) An induced mutation in tomato elF4E leads to immunity to two potyviruses. PLoS One 5:e11313

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, Lopez Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Hidalgo OB (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  PubMed  CAS  Google Scholar 

  • Quilis J, Meynard D, Vila L, Aviles FX, Guiderdoni E, Segundo BS (2007) A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol J 5:537–553

    Article  PubMed  CAS  Google Scholar 

  • Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D, Kogel KH, Vilcinskas A (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60:4105–4114

    Article  PubMed  CAS  Google Scholar 

  • Ramirez V, Agorio A, Coego A, Andrade JG, Hernandez MJ, Balaguer B, Ouwerkerk PBF, Zarra I, Vera P (2011) MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiol 155:1920–1935

    Article  PubMed  CAS  Google Scholar 

  • Reina-Pinto JJ, Yephremov A (2009) Surface lipids and plant defenses. Plant Physiol Biochem 47:540–549

    Article  PubMed  CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  PubMed  CAS  Google Scholar 

  • Roberts JK, Pitkin JW, Adams TH. 2008; USA patent publication no. 2008/0022423.

    Google Scholar 

  • Roberts-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  PubMed  CAS  Google Scholar 

  • Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Xiaolin R, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JKC (2007) The reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028

    Article  PubMed  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol 9:283–300

    Article  CAS  Google Scholar 

  • Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet M-C, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Chakraborti D, Mondal HA, Das S (2010) Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-­sucking plant hoppers. Plant Cell Rep 29:261–271

    Article  PubMed  CAS  Google Scholar 

  • Shah AD, Ahmed M, Mukhtar Z, Khan SA, Habib I, Malik ZA, Mansoor S, Saeed NA (2011) Spider toxin (Hvt) gene cloned under phloem specific RSs1 and RolC promoters provides resistance against American bollworm (Heliothis armigera). Biotechnol Lett 33:1457–1463

    Article  PubMed  CAS  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244

    Article  PubMed  CAS  Google Scholar 

  • Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6:73–81

    Article  PubMed  CAS  Google Scholar 

  • Shepherd RW, Wagner GJ (2007) Phylloplane proteins: emerging defenses at the aerial frontline? Trends Plant Sci 12:51–56

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K (2008) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    Article  CAS  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Macky RD, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  PubMed  CAS  Google Scholar 

  • Shukurov R, Voblikova V, Nikonorova AK, Komakhin RA, Komakhina V, Egorov T, Grishin E, Babakov A (2012) Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. Transgenic Res 21:313–325

    Article  PubMed  CAS  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan T, Kumar KRR, Kirti PB (2009) Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol 50:541–553

    Article  PubMed  CAS  Google Scholar 

  • Stassen JHM, Van den Ackerveken G (2011) How do oomycete effector interfere with plant life? Curr Opin Plant Biol 14:407–414

    Article  PubMed  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28:935–946

    Article  PubMed  CAS  Google Scholar 

  • Takai R, Isogai A, Seiji S, Che FS (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 12:1635–1642

    Article  CAS  Google Scholar 

  • Takakura YY, Oka NN, Suzuki JJ, Tsukamoto HH, Ishida YY (2012) Intercellular production of tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice. Mol Biotechnol 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Simonich MT, Innes RW (2007) Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 144:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defense responses: what have we learnt from Arabidopsis? Funct Plant Biol 32:1–19

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6:351–357

    Article  PubMed  CAS  Google Scholar 

  • Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragäo FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  PubMed  CAS  Google Scholar 

  • Torres AM (2010) Application of molecular markers for breeding disease resistant varieties in crop plants. In: Jain SM, Brar DS (eds.) Molecular techniques in crop improvement. Springer Science, Dordrecht, pp. 185–205

    Google Scholar 

  • Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol Plant Pathol 11:721–731

    Article  PubMed  CAS  Google Scholar 

  • van de Craen M, Goh PY, Logghe MG, Khu YL, Mortier K, Bogaert TAOE (2006) USA Patent Publication No. 2006/0247197A1

    Google Scholar 

  • van der Hoom RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2010) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    Article  PubMed  CAS  Google Scholar 

  • Venter M (2006) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124

    Article  CAS  Google Scholar 

  • Vijayan S, Kirti PB (2012) Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani. Transgenic Res 21:193–200

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park S-W (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Somerville SC (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci USA 97:1897–1902

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabdiopsis. Plant Cell 14:1–13

    Article  Google Scholar 

  • Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D’Ovidio R (2011) The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol Plant Microbe Interact 24:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Chin CK, Chen A (1998) Expression of the yeast Δ-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol Mol Plant Pathol 52:371–383

    Article  CAS  Google Scholar 

  • Wang C, Chin CK, Gianfagna T (2000) Relationship between cutin monomers and tomato resistance to powdery mildew infection. Physiological Mol Plant Pathol 57:55–61

    Article  CAS  Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe Interact 22:235–244

    Article  PubMed  CAS  Google Scholar 

  • Wani SH, Sanghera GS, Singh NB (2010) Biotechnology and plant disease control-role of RNA interference. Am J Plant Sci 1:55–68

    Article  CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15:308–321

    Article  PubMed  CAS  Google Scholar 

  • Weng LX, Deng HH, Xu JL, Li Q, Zhang YQ, Jiang ZD, Li QW, Chen JW, Zhang LH (2011) Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res 20:759–772

    Article  PubMed  CAS  Google Scholar 

  • Wenzel G (2006) Molecular plant breeding: achievements in green biotechnology and future ­perspectives. Appl Microbiol Biotechnol 70:642–650

    Article  PubMed  CAS  Google Scholar 

  • Wulff BBH, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14:468–476

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Gao QM, Yu K, Lapchyk L, Navarre D, Hildebrand D, Kachroo A, Kachroo P (2009) An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151–165

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P (2010) The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–846

    Article  PubMed  CAS  Google Scholar 

  • Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, Zhou JM (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913

    Article  PubMed  CAS  Google Scholar 

  • Xiao YH, Li XB, Yang XY, Luo M, Hou L, Guo SH, Luo XY, Pei Y (2007) Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biochem 71:1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N (2000) Differences in the recognition of glucan elicitors signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension cultured rice cells. Plant Cell 12:817–826

    PubMed  CAS  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164-12169

    Article  PubMed  CAS  Google Scholar 

  • Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR (2008) Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol 8:102

    Article  PubMed  CAS  Google Scholar 

  • Ye SH, Chen S, Zhang F, Wang W, Tian Q, Liu JZ, Chen F, Bao JK (2009) Transgenic tobacco expressing Zephyranthes grandiflora agglutinin confers enhanced resistance to aphids. Appl Biochem Biotechnol 158:615–630

    Article  PubMed  CAS  Google Scholar 

  • Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5:720–734

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact 24:554–561

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: Veni, vidi…? Plant Physiol 154:551–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported partially by research grant provided by Department of Biotechnology, Government of India and National Institute of Plant Genome Research, New Delhi. We acknowledge Dr. K. D. Srivastava, Indian Agricultural Research Institute, New Delhi for valuable suggestions and critically editing the manuscript. K.K. acknowledges NIPGR for postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, K., Verma, P.K. (2013). Plant Pathogen Interactions: Crop Improvement Under Adverse Conditions. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_16

Download citation

Publish with us

Policies and ethics