Skip to main content

Biofertilizers: A Sustainable Eco-Friendly Agricultural Approach to Crop Improvement

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Fertilizers play an important role in enhancing crop productivity. However, chemical fertilizers are expensive, non-eco-friendly, cause eutrophication, reduce organic matter and microbiotic activity in soil and are hazardous to health. Therefore, the use of biofertilizers is desirable as they are natural, biodegradable, organic and more cost-effective than chemical fertilizers. Biofertilizers consist of plant remains, organic matter and some special class of micro-organisms. Biofertilizers help to increase quality of the soil by providing nutrients and natural environment in the rhizosphere. The micro-organisms present in biofertilizers are important because they produce nitrogen, potassium, phosphorus and other nutrients required for benefit of the plants. Most biofertilizers also secrete hormones like auxins, cytokinins, biotins and vitamins which are essential for plant growth. Biofertilizers give protection to plant by secreting antibiotics which are effective against many plant pathogens. Biofertilizers also protect plant from salinity and drought stress. Biofertilizers are inexpensive and safe inputs which provide a wide scope for research in the areas of organic farming and development of stress-free environment. Overall, the significant role of biofertilizers in plant growth productivity and protection against some stresses makes them a vital and powerful tool for organic and sustainable agriculture. This article describes various kinds of biofertilizers and their impact on different crops. The various biofertilizers which are described in this chapter are Azotobacter, Azospirillum, Rhizobium, Blue green algae, phosphorus and potassium solubilizing micro-organisms and Mycorrhizae. Vermicomposting and a possible mechanism of action of various biofertilizers have also been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic, New York

    Google Scholar 

  • Abrol YP, Chatterjee SR, Kumar PA, Jain V (1999) Improvement in nitrogen use efficiency: Physiological and molecular approaches. Curr Sci 76:1357–1364

    Google Scholar 

  • Aguilera M, Quesada MT, Aguila D, Morillo JA, Rivadeneyra MA, Ramos-Cormenzana A, Monteoliva-Sánchez M (2008) Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill waste waters. Bioresour Technol 99:5640–5644

    Article  PubMed  CAS  Google Scholar 

  • Allen MF, Boosalis MG (1983) Population dynamics of sugar beets, Rhizoctonia solani, and Laetisaria arvalis: responses of a host, plant pathogen, and hyperparasite to perturbation in the field. New Phytopathol 93:61–71

    Google Scholar 

  • Allen MF, Moore JS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Ashby SF (1907) Some observations on assimilation of atmospheric nitrogen by a free living soil organism Azotobacter chroococcum. J Agric Sci 2:35–51

    Article  CAS  Google Scholar 

  • Atiyeh RM, Subler S, Edwards CA, Metzger J (1999) Growth of tomato plants in horticulture potting media amended with vermicompost. Pedobiologia 43:724–728

    Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bagyaraj DJ, Hedge SV (1978) Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. Curr Sci 47:548–549

    Google Scholar 

  • Bajpai PD, Lehri LK, Pathak AN (1974) Effect of seed inoculation with Rhizobium strains on the yield of leguminous crops. Proc Ind Natl Sci Acad B Biol Sci 40:571–575

    Google Scholar 

  • Balasubramaniam P, Subramanian S (2006) Assessment of soil test based potassium requirement for low land rice in udic haplustalf under the influence of silicon fertilization, Tamil Nadu Agricultural. University, Kumulur, Tiruchirapalli, pp. 621–712

    Google Scholar 

  • Balasubramanian R, Veerabadran V (1997) Substitution of inorganic nitrogen through local green-leaf manure and Azospirillum in rice (Oryza sativa L.). Ind J Agron 42:285–287

    Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. A mechanistic approach. Wiley-Interscience, New York

    Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–40

    Chapter  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen fixing plants. Adv Agron 36:1–54

    Article  Google Scholar 

  • Barea JM, Navare E, Motoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Microbiol 40:129–134

    Article  CAS  Google Scholar 

  • Berkum VP, Bohlool BB (1980) Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiolol Rev 44:491–517

    Google Scholar 

  • Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Eject of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95:109–121

    Article  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:451–457

    Article  PubMed  CAS  Google Scholar 

  • Buchanan MA, Russelli E, Block SD (1988) Chemical characterization and nitrogen mineralization potentials of vermicomposts derived from differing organic wastes. In: Edwards CA, Neuhauser EF (eds) Earthworms in environmental and waste management. SPB Academic, The Hague, pp 231–239

    Google Scholar 

  • Bukatsch F (1952) Contributions to the knowledge of the physiology of Azotobacter. Soils Fertilizer 16:79–96

    Google Scholar 

  • Burgmann H, Widmer F, Sigler WV, Zeyer J (2003) Detection of nifH gene expression by Azotobacter vinellandii. Soil Appl Environ Microbiol 69:1928–1935

    Article  CAS  Google Scholar 

  • Callaghan JO, Conrad M (1992) Symbiotic interactions in the evolve III ecosystem model. Biosystem 26:199–209

    Article  Google Scholar 

  • Chandra K, Greep S, Ravindranath P, Sivathsa RSH (2005) Liquid biofertilizers. Regional center for organic farming, Hebbal, Bangalore, pp 22–35

    Google Scholar 

  • Chaurasia AK, Apte SK (2011) Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol 77:395–399

    Article  PubMed  CAS  Google Scholar 

  • Cheema MA, Malik MA, Hussain A, Saha SH, Basra AMA (2001) Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of Canola (Brassica napus L.). J Agron Crop Sci 186:103–110

    Article  Google Scholar 

  • Choudhury MA, Kennedy IR (2004) Prospects and potentials for system of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Christophe C, Turpault MP, Freyklett P (2006) Root associated bacteria contribute to mineral weathering and to mineral nutrition in trees and budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  Google Scholar 

  • Chundawat GS, Sharma R, Shekhawat GS (1976) Effect of nitrogen, phosphorus and bacterial fertilization on growth and yield of gram in Rajasthan. Indian J Agron 21:127

    Google Scholar 

  • Clarson D (2004) Potash biofertilizer for eco-friendly agriculture. Agro-clinic and Research Centre, Poovanthuruthu, Kottayam (Kerala), India, pp 98–110

    Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megeas M (2008) Effect of Azospirillum brasilense co-inoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  PubMed  CAS  Google Scholar 

  • Datta M, Banish S, Dupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    Article  CAS  Google Scholar 

  • David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D (1988) Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683

    Article  PubMed  CAS  Google Scholar 

  • Desai VR, Sabale RN, Raundal PV (1999) Integrated nitrogen management in wheat coriander cropping system. J Maharashtra Agric Univ 24:273–275

    Google Scholar 

  • Dewan GI, SubbaRao NS (1979) Seed inoculation with Azospirillum brasilense and Azotobacter chroococcum and the root biomass of rice (Oryza sativa L.). Plant Soil 53:295–302

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dobereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on N2 Fixation. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Doyle J (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci 12:473–478

    Article  Google Scholar 

  • Gamal-Eldin H, Elbanna K (2011) Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice. Curr Microbiol 62:391–395

    Article  PubMed  CAS  Google Scholar 

  • Gaur AC (2006) Blue- green algae as biofertilizer: biofertilizers in sustainable agriculture: Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research. Krishi Anusandhan Bhavan I, Pusa, New Delhi, pp 148–155

    Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  • Ghosh DC (2000) Growth, productivity of summers. Sesamum (Sesamum indicum) as influenced by biofertilizer and growth regulator. Indian J Agron 45:389–394

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Gopalswamy G, Vidhyasekharan P, Chelliah S (1989) Effect of Azospirillum lipoforum incoulation and inorganic nitrogen on the wet land rice. Oryzae 26:378–380

    Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany KD (1997) Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys 341:201–206

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Shanker AB, Saxena RK, Kuhad RC (1993) Solubilization of low grade Indian rock phosphate and inorganic phosphates by Bacillus licheniformis. Folia Microbiol 38:274–276

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilising bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani KD (2006) Effect of co-inoculation with phosphate and potassium solubilising bacteria on mineral uptake and growth of pepper and cucumber. Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hayman DS (1982) Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72:1119–1125

    Google Scholar 

  • Hayman DS (1983) The physiology of vesicular arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Article  Google Scholar 

  • Holguin G, Glick BR (2003) Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr promoter improves its fitness and plant growth promoting ability, Microb. Ecology 46:122–133

    CAS  Google Scholar 

  • Holzinger A, Nagendra-Prasad D, Huys G (2011) Plant protection potential and ultrastructure of Bacillus subtilis strain 3A25. Crop Prot 30:739–744

    Article  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borris R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Ishac YZ, El-Haddad ME, Daft MJ, Ramadana EM, El-Demerdash ME (1986) Effect of seed inoculation, mycorrhizal infection and organic amendment on wheat growth. Plant Soil 90:373–382

    Article  Google Scholar 

  • Jaleel CA, Gopi R, AlaguLakshmanan GM, Panneerselvam R (2007) Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci 171:271–276

    Article  CAS  Google Scholar 

  • Jiang H, Jiang L, Guo L, Gao Z, Zeng D, Zhu L, Liang G, Qian Q (2008) Conditional and unconditional mapping of quantitative trait loci underlying plant height and tiller number in rice (Oryza sativa L.) grown at two nitrogen levels. Progr Nat Sci 18:1539–1547

    Article  CAS  Google Scholar 

  • Jung WJ, Mabood F, Souleimanov A, Smith DL (2011) Induction of defense-related enzymes in soybean leaves by class IId bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains. Microbiol Res 167:14–19

    Article  PubMed  CAS  Google Scholar 

  • Kader MA, Mian MH, Hoque MS (2002) Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. J Biol Sci 2:259–261

    Article  Google Scholar 

  • Kannan T, Ponmurugan P (2010) Response of paddy (Oryza sativa L.) varieties to Azospirillum brasilense inoculation. J Phytol 2:08–13

    Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    Article  CAS  Google Scholar 

  • Karmegam N, Daniel T (2000) Effect of biodigested slurry and vermicompost on the growth and yield of cowpea [Vigna unguiculata (L.)]. Environ Ecol 18:367–370

    Google Scholar 

  • Karmegam N, Alagermalai K, Daniel T (1999) Effect of vermicompost on the growth and yield of greengram (Phaseolus aureus Rob.). Tropic Agric 76:143–146

    Google Scholar 

  • Kaushik BD (1998) Soil plant Microbe interaction in relation to Nutrient management. Venus, New Delhi, pp 55–63

    Google Scholar 

  • Kerouvo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalathi J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Microbiology 140:679–693

    CAS  Google Scholar 

  • Kızılkaya R (2008) Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol Eng 33:150–156

    Article  Google Scholar 

  • Kogel KH, Franken P, Huckelhovenl R (2006) Endophyte or parasite – what decides? Current Opinion. Plant Biol 9:358–363

    Google Scholar 

  • Korth H, Benoni H (1990) Isolation of Pseudomonas fluorescens producing phenazine derivatives exclusively under strains conditions of iron deficiency. Zentralbl Bacteriol 274:433–435

    Article  CAS  Google Scholar 

  • Kucey RMN (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus species. on two wheat cultivars. J Appl Bacteriol 64:187–196

    Article  CAS  Google Scholar 

  • Kundu BS, Gaur AC (1980) Establishment of nitrogen fixing and phosphate solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant Soil 57:223–230

    Article  CAS  Google Scholar 

  • Kurguzov P (1954) The effect of boron on yield and quality of spring wheat. Soil Fertil 17:1187

    Google Scholar 

  • Lakshmi V, Satyanarayan A, Vijayalakshmi K, Lakshmi Kumari M, Tilak KVBR, SubbaRao NS (1977) Establishment and Survival of Spirillum lipoferum. Proc Indian Acad Sci 86:397–404

    Google Scholar 

  • Lakshmi-Kumari M, Kavimandan SK, SubbaRao NS (1976) Occurrence of nitrogen fixing Spirillum in roots of sorghum, maize and other plants. Indian J Exp Biol 14:638–649

    Google Scholar 

  • Lamabam PS, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  Google Scholar 

  • Lampayan RM, Bouman BAM, Dios JL, Soriano JB, Lactaoen AT, Faronilo JE, Thant KM (2010) Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crop Res 116:165–174

    Article  Google Scholar 

  • Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779

    PubMed  CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate – dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Lin XQ, Zhu DF, Chen HZ, Cheng SH, Uphoff N (2009) Effect of plant density and nitrogen fertilizer rates on grain yield and nitrogen uptake of hybrid rice (Oryza sativa L.). J Agric Biotechnol Sustain Dev 1:044–053

    Google Scholar 

  • Lockhead AG (1957) Soil bacteria and growth-promoting substances. Bacteriol Rev 22:145–153

    Google Scholar 

  • Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J (2001) Physiological function of exo polysaccharides produced by Lacto coccuslactis. Int J Food Microbiol 64:71–80

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Dobereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–429

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Meshram SU, Pande SS, Shanware AS, Kamdi RR (2004) Efficacy of biofertilizers integrated with chemical fertilizers in-vivo in soybean. Fertil Newslett 12:7–10

    Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latvian J Agron 8:154–157

    Google Scholar 

  • Molina-Favero C, MónicaCreus C, Luciana Lanteri M, Correa-Aragunde N, Lombardo MC, Barassi AC, Lamattina L (2007) Nitric Oxide and Plant Growth Promoting Rhizobacteria: Common Features Influencing Root Growth and Development. Adv Bot Res 46:1–33

    Article  CAS  Google Scholar 

  • Mosse B, Stribley DP, Tacon F (1981) Ecology of mycorrhiza and mycorrhizal fungi. Adv Microbiol Ecol 5:137–210

    Article  Google Scholar 

  • Murarkar SR, Tayade AS, Bodhade SN, Ulemale RB (1998) Effect of vermicompost on mulberry leaf yield. J Soils Crops 8:85–87

    Google Scholar 

  • Nair NS, SubbaRao NS (1977) Distribution and activity of phosphate solubilising microorganisms in the rhizosphere of coconut and cacao under mixed cropping. J Plant Crops 5:67–70

    CAS  Google Scholar 

  • Nelson CE, Safir GR (1982) Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta 154:407–413

    Article  Google Scholar 

  • Nianikoval GG, Kuprina EE, Pestova OV, Vodolazhskaia SV (2002) Immobilizing of Bacillus muciloginosus a producer of exopolysaccharides, on chitin. Prikladnaia Biokhimiia Mikrobiologiya 38:300–304

    Google Scholar 

  • Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101:4120–4124

    Article  PubMed  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1551–1601

    Article  Google Scholar 

  • Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Res 125:35–48

    Article  Google Scholar 

  • Pacovsky RS, Fuller G, Paul EA (1985) Influence of soil on the interactions between endomycorrhizae and Azospirillum in sorghum. Soil Biol Biochem 17:523–531

    Article  Google Scholar 

  • Pandey A, Sharma E, Palni L (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 3:379–384

    Article  Google Scholar 

  • Panwar JD (1991) Effect of VAM and Azospirillum brasilense on photosynthesis nitrogen metabolism and grain yield in wheat. Indian J Plant Physiol 34:357–361

    CAS  Google Scholar 

  • Park M, Singvilay D, Seok Y, Chung J, Ahn K (2003) Effect of phosphate solubilizing fungi on ‘P’ uptake and growth of tobacco in rock phosphate. Korean J Soil Sci Fertil 36:233–238

    CAS  Google Scholar 

  • Patil PL, Medhane NS (1974) Seed inoculation studies in gram (Cicer arietinum) with different strains of Rhizobium sp. Plant Soil 40:221–223

    Article  Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  • Peskan-Berghofer TB, Shahollari PH, Giong S, Hehl C, Markert V, Blanke G, Kost A, Varma R (2004) Oelmuller, Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Plant Physiol 122:465–477

    Article  CAS  Google Scholar 

  • Rahman MM, Hoque S, Khan ZUM (2007) Nitrogen fixation and respiratory activity of Azospirillum spp. isolated from saline habitat of Bangladesh. Bangladesh J. Life Sci 19:55–60

    Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    Article  PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar Grass (Leptochloa fusca L. Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Righi S, Lucialli P, Bruzzi L (2005) Health and environmental impacts of a fertilizer plant – Part I: Assessment of radioactive pollution. J Environ Radioact 82:167–182

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl L, Jakobsen I (1987) Rhizobium strain effects on pea: The relation between nitrogen accumulation, phosphoenolpyruvate carboxylase activity in nodules and asparagine in root bleeding sap. Physiol Planta 71:281–286

    Article  CAS  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2010) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Sarig S, Blum A, Okon Y (1992) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci 110:271–277

    Article  Google Scholar 

  • Sasek V, Musilek M (1968) Two antibiotic compounds from mycorrhizal Basidiomycetes. Folia Microbiol 13:43–51

    Article  CAS  Google Scholar 

  • Sattar MA, Gaur AC (1989) Effect of VA-mycorrhiza and phosphate dissolving microorganism on the yield and phosphorus uptake of wheat (Triticum vulgare) in Bangladesh. Bangl J Agric Sci 14:233–239

    Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Protect 30:807–813

    Article  Google Scholar 

  • Sharma JP, Singh M (1971) Response of rice to phosphatic and nitrogenous fertilizers with and without phosphobacteria in culture. Indian J Agron 16:15–18

    Google Scholar 

  • Shende ST (1987) Significance of Azotobacter inoculation for agricultural crops. In: Organic manures and biofertilizers. Division of Microbiology, IARI, New Delhi, pp. 38–45

    Google Scholar 

  • Shende ST, Apte RG, Singh T (1975) Multiple action of Azotobacter. Indian J Genet Plant Breed 3:3–14

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  PubMed  CAS  Google Scholar 

  • Siag RK, Yadav BS (2004) Effect of vermicompost and fertilizers on productivity of gram (Cicer arietinum) and soil fertility. Indian J Agric Sci 74:613–615

    Google Scholar 

  • Singh NP, Saxena MC (1973) Phosphatic fertilization of soya bean. Indian J Agric Sci 43:62–66

    Google Scholar 

  • Singhai PK, Sarma BK (2011) Srivastava JSBiological management of common scab of potato through Pseudomonas species and vermicompost. Biol Control 57:150–157

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review Plant Molecular Biology 39:221–244

    Article  CAS  Google Scholar 

  • Spiertz J (2010) Nitrogen, sustainable agriculture and food security. A review Agron Sustain Dev 30:43–55

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Styriakova I, Bhatti TM, Bigham JM, Styriak I, Vourniess A (2004) Tuoviness OH Weathering of phlogopite by Bacillus cereus and Acidiothiobacillus ferroxidans. Can J Microbiol 50:213–219

    Article  PubMed  CAS  Google Scholar 

  • SubbaRao NS, Tilak KVBR, Lakshmi-Kumari M, Singh CS (1980) Azospirillum a new bacterial fertilizer. Indian Farming 30:3–5

    Google Scholar 

  • Supanjani HHS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agro Sustainable Development 26:233–240

    Article  CAS  Google Scholar 

  • Swedrzynska D, Sawicka A (2001) Effects of inoculation on population numbers of Azospirillum bacteria under winter wheat, oat and maize. Polish Journal of Environmental Studies 10:21–25

    CAS  Google Scholar 

  • Tejera N, Luch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

  • Tilak KVBR, Murthy BN (1983) Response of barley (Hordeum vulgare) to inoculation with Azospirillum brasilense. Curr Sci 52:257–258

    Google Scholar 

  • Timonin MI (1948) Azotobacter preparation (Azotogen) as a fertilizer for cultivated plants. Soil Science Society of America 13:246–249

    Article  Google Scholar 

  • Tittabutr P, Awaya DJ, Li XQ, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  PubMed  CAS  Google Scholar 

  • Tripathi SK, Edward JC (1978) Response of Rhizobium culture inoculation: zinc and molybdenum application to soybean Glycine max. Indian Journal of Plant Physiology 21:248–252

    CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  CAS  Google Scholar 

  • VasanthaKrishna M, Bagyaraj DJ (1993) Selection of efficient VA mycorrhizal fungi for inoculating Casuarina equisetifolia. Arid soil Research Rehabilitation 7:377–380

    Article  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassilev M (2006) Microbial solubilization of rock phosphate as media containing agro industrial wastes and effect of the resulting products on plant growth and phosphorus uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of cellular constituents of the nitrogen fixing blue green algae. Cylindrospermum nusciola on the root growth of rice seedlings. J Gen Appl Microbiol 13:53–61

    Article  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 25:557–586

    Google Scholar 

  • Waller FB, Achatz H, Baltruschat J, Fodor K, Becker M, Fischer T, Heier R, Huckelhoven C, Neumann D, Wettstein P (2005) Franken Kogel KH, The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Wani SP, Chandrapalaih S, Zambre MA, Lee KK (1988) Association between N2-fixing bacteria and pearl millet plants: Responses, mechanisms and persistence. Plant Soil 110:289–302

    Article  Google Scholar 

  • Xue QH, Sheng JW, Tang L (2000) Effect of K bacteria on nutrients activation in Lou Soil Acta. Agriculture Boreali-Occidentalis Sinica 9:67–71

    Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M (2007) Zhang YY Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology 35:319–328

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zahro MK, Monib M (1984) Abdel-Al Sl, Significance of soil inoculation with silicate bacteria. Zentralblatt fur Mikrobiologi 139:349–357

    Google Scholar 

  • Zambre MA, Konde BK, Sonar KR (1984) Effect of Azotobacter chrococcum and Azospirillum brasilense inoculation under graded levels of nitrogen on growth and yield of wheat. Plant Soil 79:61–67

    Article  Google Scholar 

  • Zhang S, Moyne A, Reddy MS, Kloepper JW (2002) The role of salicylic acid induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control 25:288–296

    Article  Google Scholar 

  • Zhang CJ, Tu GQ, Cheng CJ (2004) Study on potassium dissolving ability of silicate bacteria. Shaguan College Journal 26:1209–1216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sahoo, R.K., Bhardwaj, D., Tuteja, N. (2013). Biofertilizers: A Sustainable Eco-Friendly Agricultural Approach to Crop Improvement. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_15

Download citation

Publish with us

Policies and ethics