Systems Medicine: A New Model for Health Care

  • Linda MacArthur
  • Timothy R. Mhyre
  • Elenora Connors
  • Sona Vasudevan
  • Elliott Crooke
  • Howard J. Federoff
Chapter

Abstract

In 2003, Dr. Elias Zerhouni created the National Institutes of Health (NIH) roadmap and articulated an agenda to aggressively pursue a more integrated approach to use research discoveries to impact human health. Working groups focused on three major themes: New Pathways to Discovery, Research Teams of the Future, and Reengineering the Clinical Research Enterprise. The findings illustrated the need to develop science to decipher biological networks, and the need for broad-scale application of bioinformatics and computational methods to biological systems [1]. In March 2007, the Department of Health and Human Services launched the Personalized Health Care Initiative (PHCI) with the aim to accelerate the development of personalized treatment strategies. The program focuses on high-throughput technologies and developing an infrastructure to promote electronic medical records [2].

Keywords

Cholesterol Obesity Lipase Dementia Schizophrenia 

Notes

Acknowledgements

The authors are grateful to Dr Edmund Pellegrino for his comments on the manuscript. The authors recognize support from grant W81XWH-09-1-0107 from the Telemedicine and Advanced Technology Research Center, USAMRMC.

References

  1. 1.
    Zerhouni E. Medicine. The NIH Roadmap. Science. 2003;302(5642):63–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Services HaH. Personalized Health Care for Informed and Effective Choices. [cited 2011]; Available from: http://www.hhs.gov/myhealthcare/goals/index.html.
  3. 3.
    Sauer U, Heinemann M, Zamboni N. Genetics. Getting closer to the whole picture. Science. 2007;316(5824):550–1.PubMedCrossRefGoogle Scholar
  4. 4.
    Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004;306(5696):640–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Mitka M. Experts debate utility of PSA velocity as a criterion for prostate biopsy. J Am Med Assoc. 2011;305(15):1522.CrossRefGoogle Scholar
  6. 6.
    Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12(2):116–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet. 2011;20(R2):R182–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives [Review]. Endocr J. 2011;58(9):723–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Sleegers K, Lambert JC, Bertram L, Cruts M, Amouyel P, Van Broeckhoven C. The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet. 2010;26(2):84–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, et al. Whole-genome sequencing for optimized patient management. Sci Transl Med. 2011;3(87):87re3.PubMedCrossRefGoogle Scholar
  11. 11.
    Kingsmore SF, Saunders CJ. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3(87):87ps23.PubMedCrossRefGoogle Scholar
  12. 12.
    Wetterstrand K. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing Program Available at: http://www.genome.gov/sequencingcosts. Accessed 11-27-2011.
  13. 13.
    Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3(65):65ra4.PubMedCrossRefGoogle Scholar
  14. 14.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007;7(1):54–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci. 2007;1115:1–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G. Crowdsourcing network inference: the DREAM predictive signaling network challenge. Sci Signal. 2011;4(189):mr7.PubMedCrossRefGoogle Scholar
  18. 18.
    Afgan E, Baker D, Coraor N, Goto H, Paul IM, Makova KD, et al. Harnessing cloud computing with Galaxy Cloud. Nat Biotechnol. 2011;29(11):972–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.PubMedCrossRefGoogle Scholar
  20. 20.
    Kohonen-Corish M, Weber TK, Lindblom A, Macrae F. Report of the combined meeting of the International Society for Gastrointestinal Hereditary Tumours, the Human Variome Project and the National Cancer Institute Colon Cancer Family Registry, Duesseldorf, Germany, 24 June 2009. Fam Cancer. 2010;9(4):705–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009;373(9660):309–17.PubMedCrossRefGoogle Scholar
  25. 25.
    Roden DM, Shuldiner AR. Responding to the clopidogrel warning by the US food and drug administration: real life is complicated. Circulation. 2010;122(5):445–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Lesko LJ, Zineh I. DNA, drugs and chariots: on a decade of pharmacogenomics at the US FDA. Pharmacogenomics. 2010;11(4):507–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Dolgin E. Preemptive genotyping trialed to prevent adverse drug reactions. Nat Med. 2011;17(11):1323.PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer P, Alexopoulos LG, Bonk T, Califano A, Cho CR, de la Fuente A, et al. Verification of systems biology research in the age of collaborative competition. Nat Biotechnol. 2011;29(9):811–5.PubMedCrossRefGoogle Scholar
  29. 29.
    NIH TNIoH. NIH Roadmap-National Centers for Biomedical Computing. 2011 [updated Nov 22, 2011; cited 2011 Nov 29]; Available from: http://www.bisti.nih.gov/ncbc/.
  30. 30.
    Walsh P. Asperger syndrome and the supposed obligation not to bring disabled lives into the world. J Med Ethics. 2010;36(9):521–4.PubMedCrossRefGoogle Scholar
  31. 31.
    CDC. Autism Spectrum Disorders (ASDs). Center for Disease Control and Prevention; 2010 [cited 2011]; Available from: http://www.cdc.gov/ncbddd/autism/data.html.
  32. 32.
    Wright CF, Hall A, Zimmern RL. Regulating direct-to-consumer genetic tests: what is all the fuss about? Genet Med. 2011;13(4):295–300.PubMedCrossRefGoogle Scholar
  33. 33.
    23andme. 2011 [cited 2011]; Available from: https://www.23andme.com/.
  34. 34.
    Gewin V. Education: Inspiration for informatics. Nature. 2011;478(7367):143–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Madhavan S, Gusev Y, Harris M, Tanenbaum DM, Gauba R, Bhuvaneshwar K, et al. G-DOC: a systems medicine platform for personalized oncology. Neoplasia. 2011;13(9):771–83.PubMedGoogle Scholar
  36. 36.
    Pedersen BK. The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J Physiol. 2009;587(Pt 23):5559–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics. 2011;10(7):M110 004945.PubMedGoogle Scholar
  38. 38.
    Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, et al. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res. 2011;10(12):5433–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Herder C, Karakas M, Koenig W. Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther. 2011;90(1):52–66.PubMedCrossRefGoogle Scholar
  41. 41.
    CDC. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.Google Scholar
  42. 42.
    Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr Alzheimer Res. 2008;5(5):438–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimaki M, Witte DR. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet. 2009;373(9682):2215–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino Sr RB. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007;167(10):1068–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Selvin E, Ning Y, Steffes MW, Bash LD, Klein R, Wong TY, et al. Glycated hemoglobin and the risk of kidney disease and retinopathy in adults with and without diabetes. Diabetes. 2011;60(1):298–305.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Imamura M, Iwata M, Maegawa H, Watada H, Hirose H, Tanaka Y, et al. Genetic variants at CDC123/CAMK1D and SPRY2 are associated with susceptibility to type 2 diabetes in the Japanese population. Diabetologia. 2011;54(12):3071–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60(10):2624–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43(10):990–5.PubMedCrossRefGoogle Scholar
  53. 53.
    de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care. 2011;34(1):121–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Janipalli CS, Kumar MV, Vinay DG, Sandeep MN, Bhaskar S, Kulkarni SR, et al. Analysis of 32 common susceptibility genetic variants and their combined effect in predicting risk of Type 2 diabetes and related traits in Indians. Diabet Med 2012;29(1):121-127.Google Scholar
  55. 55.
    Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76(5):911–22.PubMedGoogle Scholar
  57. 57.
    Moore MC, Davis SN, Mann SL, Cherrington AD. Acute fructose administration improves oral glucose tolerance in adults with type 2 diabetes. Diabetes Care. 2001;24(11):1882–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Chong MF, Fielding BA, Frayn KN. Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr. 2007;85(6):1511–20.PubMedGoogle Scholar
  59. 59.
    Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Linda MacArthur
    • 1
  • Timothy R. Mhyre
    • 1
  • Elenora Connors
    • 2
  • Sona Vasudevan
    • 1
  • Elliott Crooke
    • 1
  • Howard J. Federoff
    • 1
  1. 1.The Georgetown University Medical CenterWashingtonUSA
  2. 2.O’Neill Institute for National and Global Health LawGeorgetown UniversityWashingtonUSA

Personalised recommendations