Skip to main content

The Dynamical Behaviours of Diseases in Africa

  • Chapter
  • First Online:
Handbook of Systems and Complexity in Health
  • 3542 Accesses

Abstract

More than ever before, there is now great concern about infectious diseases. Africa bears the disproportionate burden of most infectious diseases and the detrimental impact of infectious diseases is currently more strongly felt in Africa. Although chronic diseases, such as cancer and heart disease receive more attention in developed countries, infectious diseases are the most well-known causes of suffering and mortality in Africa and some developing countries. The multiple burdens of infectious diseases represent a demand on health services of Africa far beyond that experienced in developed countries. Infectious diseases, such as malaria, HIV/AIDS and tuberculosis (TB) are a growing health problem in Africa. Resources for addressing health problems of Africa remain disproportionately low when compared with the tremendous disease burden. The United Nations Development Programme (UNDP) report on the Millennium Development Goals (MDGs) [1] cautions that the health goals of the MDGs will not be met by 2015 in the neediest countries, and, in fact warns that the situation in Africa may actually worsen. The variety of intervention programmes that can be implemented to control these infectious diseases and the limited resources available in Africa to combat these infectious diseases in addition to the existence of already strained and weak public health infrastructure results in “infectious diseases” in Africa being a complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the details of all models refer to the original papers.

References

  1. UNDP. The Millennium Development Goals Report 2005. New York: United Nations Development Program. Accessed online at http://millenniumindicators.un.org/unsd/mi/mi_dev_report.asp.

  2. Corbett EL, Steketee RW, Kuile FO, Latif AS, Kamail A, Hayes RJ. HIV-1/AIDS and the control of other infectious diseases in Africa. AIDS Africa III. 2002;359:2177–87.

    Google Scholar 

  3. Magombedze G, Garira W, Mwenje E. In-vivo mathematical study of HIV-1 and Mycobacterium tuberculosis co-infection dynamics. J Biol Syst. 2008;16(3):357–94.

    Article  CAS  Google Scholar 

  4. Mukandavire Z, Gumel AB, Garira W, Tchuenche JM. Mathematical analysis of a model for HIV-Malaria co-infection. J Math Biosci Eng. 2009;6(2):333–63.

    Article  Google Scholar 

  5. Magombedze G, Garira W, Mwenje E. Modelling the TB/HIV-1 co-infection and the effects of treatment. Math Popul Stud. 2010;17(1):12–64.

    Article  Google Scholar 

  6. Bhunu CP, Garira W. Modelling HIV/AIDS and tuberculosis coinfection. Bull Math Biol. 2009;71(7):1745–80.

    Article  PubMed  CAS  Google Scholar 

  7. Bhunu CP, Tchuenche JM, Garira W, Magombedze G, Mushayabasa S. Modelling the effects of schistosomiasis on the transmission dynamics of HIV/AIDS. J Biol Syst. 2010;18(2):277–97.

    Article  Google Scholar 

  8. Chiyaka C, Garira W, Dube S. Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic areas. Theor Popul Biol. 2009;75(1):14–29.

    Article  PubMed  Google Scholar 

  9. Bhunu CP, Mukandavire Z, Garira W. A two strain tuberculosis transmission model with therapy and quarantine. Math Model Anal. 2009;14(3):291–312.

    Article  Google Scholar 

  10. Magombedze G, Garira W, Mwenje E, Bhunu CP. Mycobacterium tuberculosis treatment and the emergence of a multi-drug resistant strain in the lungs. In: Tchuenche JM, Chiyaka C, editors. Infectious disease modelling research progress. NewYork: Nova Publishers; 2009. p. 197–227. ISBN 978-1-60741-347-9.

    Google Scholar 

  11. Bhunu CP, Garira W. Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment. Acta Biotheor. 2009;57(3):361–81.

    Article  PubMed  CAS  Google Scholar 

  12. Magombedze G, Garira W, Mwenje E. Modelling the human immune response to Mycobacterium Tuberculosis in the lungs. J Math Biosci Eng. 2006;3(4):661–82.

    Article  Google Scholar 

  13. Bhunu CP, Garira W. Modelling the transmission of multidrug-resistant and extensively drug-resistant TB. In: Tchuenche JM, Mukandavire Z, editors. Advances in disease epidemiology. New York: Nova; 2009. p. 195–220. ISBN 160741452X.

    Google Scholar 

  14. Aluwong T, Bello M. Emerging diseases and implications for millennium development goals in Africa by 2015 – an overview. Vet Ital. 2010;46(2):137–43.

    PubMed  Google Scholar 

  15. Currie CS, Williams BG, Cheng RC, Dye C. Tuberculosis epidemics driven by HIV: is prevention better than cure? AIDS. 2003;17:2501–8.

    Article  PubMed  Google Scholar 

  16. North RJ, Jung Y. Immunity in tuberculosis. Annu Rev Immunol. 2004;22:599–623.

    Article  PubMed  CAS  Google Scholar 

  17. USAID. Reducing the threat of infectious diseases of major public health importance. USAID’s initiative for to prevent and control infectious diseases. 1998. http://transition.usaid.gov/our_work/global_health/id/idstrategy.pdf.

  18. Alam SJ, Meyer R, Norling E. A model for HIV spread in a South African village. CPM Report No.: 08-186. 2008. http://cfpm.org/cpmrep186.html.

  19. Stillwaggon E. Complexity, cofactors and the failure of AIDS policy in Africa. J Int AIDS Soc. 2009;12:1–9.

    Article  Google Scholar 

  20. Daun S, Clermont G. In silico modeling in infectious diseases. Drug Discov Today Dis Models. 2007;4(3):117–22.

    Article  PubMed  Google Scholar 

  21. Magombedze G, Garira W, Mwenje E. Modelling the immunopathogenesis of HIV-1 infection and the effect of multi-drug therapy: the role of fusion inhibitors in HAART. J Math Biosci Eng. 2008;5(3):485–504.

    Article  Google Scholar 

  22. Garira W, Musekwa SD, Shiri T. Optimal control of combined therapy in a single strain HIV-1 model. Electron J Differ Equ. 2005;2005(52):1–22.

    Google Scholar 

  23. Hethcote WH. The basic epidemiology models: models, expressions for R0, parameter estimation, and applications. In: Stefan MA, Xia Y, editors. Mathematical understanding of infectious disease. Singapore: World Scientific; 2008. ISBN 978-981-283-482-9.

    Google Scholar 

  24. Li X, Wang Z, Lu T, Che X. Modelling immune system: principles, models, analysis and perspectives. J Bionic Eng. 2009;6:77–85.

    Article  Google Scholar 

  25. Galea S, Riddle M, Kaplan GA. Casual thinking and complex systems in epidemiology. Int J Epidemiol. 2010;39:97–106.

    Article  PubMed  Google Scholar 

  26. McCallum H, Barlow N, Hone J. How should pathogen transmission be modeled? Trends Ecol Evol. 2001;16(6):295–300.

    Article  PubMed  Google Scholar 

  27. Mukandavire Z, Garira W. HIV/AIDS model for assessing the effects of prophylactic sterilizing vaccines, condoms and treatment with amelioration. J Biol Syst. 2006;14(3):323–55.

    Article  Google Scholar 

  28. Mukandavire Z, Chiyaka C, Garira W, Musuka G. Mathematical analysis of a sex-structured HIV/AIDS model with a discrete time delay. Nonlinear Anal Theory Methods Appl. 2009;71(3–4):1082–93.

    Article  Google Scholar 

  29. Mukandavire Z, Garira W. Age and sex structured model for assessing the demographic impact of mother to child transmission of HIV/AIDS. Bull Math Biol. 2007;69(6):2061–92.

    Article  PubMed  CAS  Google Scholar 

  30. Mukandavire Z, Garira W, Chiyaka C. Asymptotic properties of an HIV/AIDS model with a time delay. J Math Anal Appl. 2007;330:916–33.

    Article  Google Scholar 

  31. Mukandavire Z, Garira W. Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe. J Math Biol. 2007;54(5):669–99.

    Article  PubMed  CAS  Google Scholar 

  32. Mukandavire Z, Garira W. Modelling circumcision and condom use as HIV/AIDS preventive control strategies. J Math Comput Model. 2007;46(11–12):1353–72.

    Article  Google Scholar 

  33. Mukandavire Z, Garira W. Effect of public health educational campaigns and the role of sex workers in the spread of HIV/AIDS. J Theor Popul Biol. 2007;72(3):346–65.

    Article  CAS  Google Scholar 

  34. Mukandavire Z, Garira W, Tchuenche JM. Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics. Appl Math Model. 2009;33(4):2084–95.

    Article  Google Scholar 

  35. Bhunu CP, Mushayabasa S, Garira W, Ngarakana-Gwasira E, Tchuenche JM. Is the world doing enough for the poor? A case of HIV/AIDS testing and counselling. World J Model Simul. 2010;6(3):163–76.

    Google Scholar 

  36. Shiri T, Garira W, Musekwa SD. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Math Biosci Eng. 2005;2(4):811–32.

    Article  PubMed  Google Scholar 

  37. Igwe PC, Ebuehi OM, Inem V, Afolabi BM. Effect of the use of insecticide-treated bed nets on birth outcomes among primigravidae in a peri urban slum settlement in South-East Nigeria. SA Fam Prac. 2007;49(6):1.

    Google Scholar 

  38. Li J. Simple mathematical models for interacting wild and transgenic mosquito populations. Math Biosci. 2004;189:39–59.

    Article  PubMed  Google Scholar 

  39. Li J. Heterogeneity in modeling of mosquito populations with transgenic mosquitoes. J Differ Equ Appl. 2005;11(4–5):443–57.

    Google Scholar 

  40. Chiyaka C, Garira W, Dube S. Transmission model of endemic human malaria in a partially immune population. J Math Comput Model. 2007;46(5–6):806–22.

    Article  Google Scholar 

  41. Chiyaka C, Garira W, Dube S. Mathematical modelling of the impact of vaccination on malaria epidemiology. Int J Qual Theor Differ Equ Appl. 2007;1(1):28–58.

    Google Scholar 

  42. Chiyaka C, Tchuenche JM, Garira W, Dube S. A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Appl Math Comput. 2008;195(2):641–62.

    Article  Google Scholar 

  43. Bhunu CP, Mukandavire Z, Garira W, Zimba M. Tuberculosis transmission model with chemoprophylaxis and treatment. Bull Math Biol. 2008;70(4):1163–91.

    Article  PubMed  CAS  Google Scholar 

  44. Bhunu CP, Garira W, Mukandavire Z, Magombedze G. Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control. J Theor Biol. 2008;254(3):633–49.

    Article  PubMed  CAS  Google Scholar 

  45. Perrin D, Ruskin HJ, Crane M. An agent – based approach to immune system modelling: priming individual response. World Acad Sci Eng Technol. 2006;17:80–6.

    Google Scholar 

  46. Bauer AL, Beauchemin CAA, Perelson AS. Agent – based modelling of host–pathogen systems. Inf Sci (NY). 2009;179(10):1379–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston Garira Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garira, W. (2013). The Dynamical Behaviours of Diseases in Africa. In: Sturmberg, J., Martin, C. (eds) Handbook of Systems and Complexity in Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4998-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4998-0_35

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4997-3

  • Online ISBN: 978-1-4614-4998-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics