Skip to main content

Complexity in Movement Disorders: A Systems Approach to Intervention

  • Chapter
  • First Online:
  • 3406 Accesses

Abstract

Too often overlooked, normal motor function is one of the most critical components of the human existence. The ability to move rests at the core of quality of life, due to the freedom that independent mobility offers. Despite its central role in everyday life, motor function is sometimes viewed as independent from and subsidiary to cognitive function (see [1]). As a result, there has been relatively less attention paid to the deficits in motor function that arise due to disease. However, a growing body of evidence points to movement disorders as being a central issue in a variety of neurological diseases and disorders, even ones that were considered as exclusively “mental” disorders in the past. In this chapter, we will explore a systems approach to motor dysfunction. The chapter is laid out in the following way. First, the chapter will briefly review the ubiquity of similar patterns of behaviour in physics and biology as an overarching framework. The ubiquity of findings across a wide range of complex systems forms the central theme of this chapter. I will also highlight similarities across findings in a broad range of areas of study that are often considered to be disparate fields of science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a broader overview, see Chap. 11.

References

  1. Rosenbaum DA. The Cinderella of psychology: the neglect of motor control in the science of mental life and behavior. Am Psychol. 2005;60(4):308–17.

    Article  PubMed  Google Scholar 

  2. West BJ. Where medicine went wrong: rediscovering the path to complexity. Hackensack: Wold Scientific; 2006.

    Google Scholar 

  3. Guastello SJ. Managing emergent phenomena: nonlinear dynamics in work organizations. Mahwah, NJ: Lawrence Erlbaum; 2002.

    Google Scholar 

  4. Bak P. How nature works: the science of self-organized criticality. New York: Copernicus; 1996.

    Google Scholar 

  5. Bar-Yam Y. Dynamics of complex systems. New York: Westview; 1997.

    Google Scholar 

  6. Gilden D, Thornton T, Mallon M. 1/f noise in human cognition. Science. 1995;267(5205):1837–9.

    Article  PubMed  CAS  Google Scholar 

  7. Van Orden GC, Holden JG, Turvey MT. Human cognition and 1/f scaling. J Exp Psychol Gen. 2005;134(1):117–23.

    Article  PubMed  Google Scholar 

  8. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol. 1996;80(5):1448–57.

    PubMed  CAS  Google Scholar 

  9. Jordan K, Challis JH, Newell KM. Long range correlations in the stride interval of running. Gait Posture. 2006;24(1):120–5.

    Article  PubMed  Google Scholar 

  10. Hong SL, James EG, Newell KM. Age-related complexity and coupling of children’s sitting posture. Dev Psychobiol. 2008;50(5):502–10.

    Article  PubMed  Google Scholar 

  11. Duarte M, Zatsiorsky VM. On the fractal properties of natural human standing. Neurosci Lett. 2000;283(3):173–6.

    Article  PubMed  CAS  Google Scholar 

  12. Blesic S, Stratimirovic D, Milosevic S, Maric J, Kostic V, Ljubisavljevic M. Scaling analysis of the effects of load on hand tremor movements in essential tremor. Phys A Stat Mech Appl. 2011;390(10):1741–6.

    Article  Google Scholar 

  13. Aks DJ, Zelinsky GJ, Sprott JC. Memory across eye-movements: 1/f dynamic in visual search. Nonlinear Dynamics Psychol Life Sci. 2002;6(1):1–25.

    Article  Google Scholar 

  14. Nakamura T, Kiyono K, Yoshiuchi K, Nakahara R, Struzik ZR, Yamamoto Y. Universal scaling law in human behavioral organization. Phys Rev Lett. 2007;99(13):138103.

    Article  PubMed  Google Scholar 

  15. Roizen NJ, Higgins AM, Antshel KM, Fremont W, Shprintzen R, Kates W. 22q11.2 deletion syndrome: are motor deficits more than expected for IQ level? J Pediatr. 2010;157(4):658–61.

    Article  PubMed  CAS  Google Scholar 

  16. Piek JP, Pitcher TM, Hay DA. Motor coordination and kinaesthesis in boys with attention deficit–hyperactivity disorder. Dev Med Child Neurol. 1999;41(3):159–65.

    Article  PubMed  CAS  Google Scholar 

  17. Henderson SE, Morris J, Frith U. The motor deficit in Down’s syndrome children: a problem of timing? J Child Psychol Psychiatry. 1981;22(3):233–45.

    Article  PubMed  CAS  Google Scholar 

  18. Ming X, Brimacombe M, Wagner GC. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007;29(9):565–70.

    Article  PubMed  Google Scholar 

  19. Smith MA, Brandt J, Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature. 2000;403(6769):544–9.

    Article  PubMed  CAS  Google Scholar 

  20. Berardelli A, Rothwell JC, Day BL, Marsden CD. Movements not involved in posture are abnormal in Parkinson’s disease. Neurosci Lett. 1984;47(1):47–50.

    Article  PubMed  CAS  Google Scholar 

  21. Manckoundia P, Pfitzenmeyer P, d’Athis P, Mourey F. Impact of cognitive task on the posture of elderly subjects with Alzheimer’s disease compared to healthy elderly subjects. Mov Disord. 2006;21(2):236–41.

    Article  PubMed  Google Scholar 

  22. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cogn. 2009; 71(3):345–53.

    Article  PubMed  Google Scholar 

  23. Marvel CL, Schwartz BL, Rosse RB. A quantitative measure of postural sway deficits in schizophrenia. Schizophr Res. 2004;68(2–3):363–72.

    Article  PubMed  Google Scholar 

  24. Bolbecker AR, Hong SL, Kent JS, Klaunig MJ, O’Donnell BF, Hetrick WP. Postural control in bipolar disorder: increased sway area and decreased dynamical complexity. PLoS One. 2011;6(5):e19824.

    Article  PubMed  CAS  Google Scholar 

  25. Bolbecker AR, Hong SL, Kent JS, Forsyth JK, Klaunig MJ, Lazar EK, et al. Paced finger-tapping abnormalities in bipolar disorder indicate timing dysfunction. Bipolar Disord. 2011;13(1):99–110.

    Article  PubMed  Google Scholar 

  26. Allen PA, Namazi KH, Patterson MB, Crozier LC, Groth KE. Impact of adult age and Alzheimer’s ­disease on levels of neural noise for letter matching. J Gerontol. 1992;47(5):P344–9.

    Article  PubMed  CAS  Google Scholar 

  27. Li S-C, Lindenberger U, Sikström S. Aging cognition: from neuromodulation to representation. Trends Cogn Sci. 2001;5(11):479–86.

    Article  PubMed  Google Scholar 

  28. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.

    Article  PubMed  CAS  Google Scholar 

  29. Pincus SM. Approximate entropy as a measure of system-complexity. Proc Natl Acad Sci USA. 1991;88:2297–301.

    Article  PubMed  CAS  Google Scholar 

  30. Sosnoff JJ, Newell KM. Age-related loss of adaptability to fast time scales in motor variability. J Gerontol B Psychol Sci Soc Sci. 2008;63(6):P344–52.

    Article  PubMed  Google Scholar 

  31. Duarte M, Sternad D. Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res. 2008;191(3):265–76.

    Article  PubMed  Google Scholar 

  32. Hong SL, James EG, Newell KM. Coupling and irregularity in the aging motor system: tremor and movement. Neurosci Lett. 2008;433(2):119–24.

    Article  PubMed  CAS  Google Scholar 

  33. Hong SL, Bodfish JW, Newell KM. Power-law scaling for macroscopic entropy and microscopic complexity: evidence from human movement and posture. Chaos. 2006;16:013135.

    Article  PubMed  Google Scholar 

  34. Newell KM, Vaillancourt DE, Sosnoff JJ. Aging, complexity and motor performance: health and disease states. In: Birren JE, Schaie KW, editors. Handbook of the psychology of aging. Amsterdam: Elsevier; 2006. p. 163–82.

    Chapter  Google Scholar 

  35. Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging. 2002;23(1):1–11.

    Article  PubMed  Google Scholar 

  36. Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M. The route to diabetes: loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes. 2008;1:3–11.

    PubMed  CAS  Google Scholar 

  37. Gottschalk A, Bauer MS, Whybrow PC. Evidence of chaotic mood variation in bipolar disorder. Arch Gen Psychiatry. 1995;52:947–59.

    Article  PubMed  CAS  Google Scholar 

  38. Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci. 2002;57:B115–25.

    Article  PubMed  Google Scholar 

  39. Pincus SM. Greater signal regularity may indicate increased system isolation. Math Biosci. 1994;122(2):161–81.

    Article  PubMed  CAS  Google Scholar 

  40. Lipsitz LA. Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ. 2004;16:pe16.

    Article  Google Scholar 

  41. Assisi CG, Jirsa VK, Kelso JAS. Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. Phys Rev Lett. 2005;94:4.

    Article  Google Scholar 

  42. Hong SL. The dynamics of structural and functional complexity across the lifespan. Nonlinear Dynamics Psychol Life Sci. 2007;11(2):219–34.

    PubMed  Google Scholar 

  43. Newell KM, Liu Y-T, Mayer-Kress G. A dynamical systems interpretation of epigenetic landscapes for infant motor development. Infant Behav Dev. 2003;26(4):449–72.

    Article  Google Scholar 

  44. Vaillancourt DE, Slifkin AB, Newell KM. Regularity of force tremor in Parkinson’s disease. Clin Neurophysiol. 2001;112(9):1594–603.

    Article  PubMed  CAS  Google Scholar 

  45. Morrison S, Sosnoff JJ. Age-related changes in the adaptability of neuromuscular output. J Mot Behav. 2009;41(3):274–83.

    Article  PubMed  Google Scholar 

  46. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos. 1995;5(1):82–7.

    Article  PubMed  CAS  Google Scholar 

  47. Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Motor development in children. Amsterdam: Nijhoff; 1986. p. 341–61.

    Google Scholar 

  48. Bernstein NA. The co-ordination and regulation of movements. Oxford: Pergamon; 1967.

    Google Scholar 

  49. Kugler PN, Turvey MT. Information, natural laws, and self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum; 1987.

    Google Scholar 

  50. Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge, MA: MIT Press; 1995.

    Google Scholar 

  51. Holt KG, Hamill J, Andres RO. The force-driven harmonic oscillator as a model for human locomotion. Hum Mov Sci. 1990;9(1):55–68.

    Article  Google Scholar 

  52. Haken H, Kelso JAS, Bunz H. A theoretical model of phase-transitions in human hand movements. Biol Cybern. 1985;51(5):347–56.

    Article  PubMed  CAS  Google Scholar 

  53. Zanone PG, Kelso JA. Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform. 1992;18(2):403–21.

    Article  PubMed  CAS  Google Scholar 

  54. Zanone PG, Kelso JAS. Coordination dynamics of learning and transfer: collective and component levels. J Exp Psychol Hum Percept Perform. 1997;23(5):1454–80.

    Article  PubMed  CAS  Google Scholar 

  55. Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures I. Theoretical lines of convergence. In: Stelmach GE, Requin J, editors. Tutorials in motor behavior. Amsterdam: Elsevier; 1980.

    Google Scholar 

  56. Hong SL, Newell KM. Entropy conservation in the control of human action. Nonlinear Dynamics Psychol Life Sci. 2008;12(2):163–90.

    PubMed  Google Scholar 

  57. Hong SL. The entropy conservation principle: applications in ergonomics and human factors. Nonlinear Dynamics Psychol Life Sci. 2010;14(3):291–315.

    PubMed  Google Scholar 

  58. Müller I. A history of thermodynamics: the doctrine of energy and entropy. Berlin: Springer; 2007.

    Google Scholar 

  59. Hong SL, Newell KM. Entropy compensation in human motor adaptation. Chaos. 2008;18:013108.

    Article  PubMed  Google Scholar 

  60. Hong SL, Newell KM. Motor entropy in response to task demands and environmental information. Chaos. 2008;18:033131.

    Article  PubMed  Google Scholar 

  61. Vaillancourt D, Russell D. Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res. 2002;145(3):275–85.

    Article  PubMed  Google Scholar 

  62. Hong SL, Beck MR. Uncertainty compensation in human attention: evidence from response times and fixation durations. PLoS One. 2010;5(7):e11461.

    Article  PubMed  Google Scholar 

  63. Hong S, Brown A, Newell K. Compensatory properties of visual information in the control of isometric force. Atten Percept Psychophys. 2008;70(2):306–13.

    Article  Google Scholar 

  64. Kelso JAS, Engstrøm DA. The complementary nature. Cambridge, MA: MIT Press; 2006.

    Google Scholar 

  65. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9(9):665–77.

    Article  PubMed  CAS  Google Scholar 

  66. Gotham AM, Brown RG, Marsden CD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain. 1988;111(2):299–321.

    Article  PubMed  Google Scholar 

  67. Lees AJ, Smith E. Cognitive deficits in the early stages of Parkinson’s disease. Brain. 1983;106(2):257–70.

    Article  PubMed  Google Scholar 

  68. Starkstein SE, Preziosi TJ, Bolduc PL, Robinson RG. Depression in Parkinson’s disease. J Nerv Ment Dis. 1990;178(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  69. Factor SA, Feustel PJ, Friedman JH, Comella CL, Goetz CG, Kurlan R, et al. Longitudinal outcome of Parkinson’s disease patients with psychosis. Neurology. 2003;60(11):1756–61.

    Article  PubMed  CAS  Google Scholar 

  70. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–81.

    Article  PubMed  Google Scholar 

  71. Priplata A, Niemi J, Salen M, Harry J, Lipsitz LA, Collins JJ. Noise-enhanced human balance control. Phys Rev Lett. 2002;89(23):238101.

    Article  PubMed  Google Scholar 

  72. Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, et al. Noise-enhanced balance control in older adults. Neuroreport. 2002;13(15):1853–6.

    Article  PubMed  Google Scholar 

  73. Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, et al. Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett. 2007;77(6):68008.

    Article  PubMed  Google Scholar 

  74. Wolf SL, Blanton S, Baer H, Breshears J, Butler AJ. Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist. 2002;8(6):325–38.

    Article  PubMed  Google Scholar 

  75. Charles JR, Wolf SL, Schneider JA, Gordon AM. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol. 2006;48(08):635–42.

    Article  PubMed  Google Scholar 

  76. Gordon AM, Charles J, Wolf SL. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Arch Phys Med Rehabil. 2005;86(4):837–44.

    Article  PubMed  Google Scholar 

  77. Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry. 2000;48(6):593–604.

    Article  PubMed  CAS  Google Scholar 

  78. Frank E, Kupfer DJ, Thase ME, Mallinger AG, Swartz HA, Fagiolini AM, et al. Two-year outcomes for Interpersonal and Social Rhythm Therapy in individuals with bipolar I disorder. Arch Gen Psychiatry. 2005;62(9):996–1004.

    Article  PubMed  Google Scholar 

  79. Frank E, Soreca I, Swartz HA, Fagiolini AM, Mallinger AG, Thase ME, et al. The role of Interpersonal and Social Rhythm Therapy in improving occupational functioning in patients with bipolar I disorder. Am J Psychiatry. 2008;165(12):1559–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the National Institutes on Aging (R21AG035158 and 1R21AG039818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lee Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hong, S.L. (2013). Complexity in Movement Disorders: A Systems Approach to Intervention. In: Sturmberg, J., Martin, C. (eds) Handbook of Systems and Complexity in Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4998-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4998-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4997-3

  • Online ISBN: 978-1-4614-4998-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics