Skip to main content

Nonlinear Relations of Cardiovascular Risk Factors to Neuropsychological Function and Dementia

  • Chapter
  • First Online:
Handbook of Systems and Complexity in Health

Abstract

Cardiovascular diseases are the leading cause of morbidity and mortality in the United States and most westernized nations [1]. Cardiovascular risk factors and diseases confer substantial increase in risk for ischemic and hemorrhagic stroke [2]. Yet, outside the context of clinical stroke, the brain is an under-recognized target organ of a spectrum of cardiovascular diseases. Although it has long been known that cardiovascular risk factors and diseases contribute to the development of vascular (previously known as multi-infarct) dementia, we now know that similar risk is conferred for Alzheimer’s disease (AD) [3]. Importantly, long before clinical manifestations of stroke or dementia are apparent, cardiovascular risk factors are also known to negatively impact the brain and neurocognitive function. Evidence suggests that cardiovascular risk factors elevate risk of concurrent cognitive dysfunction, as well as accelerated cognitive aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The safety of statin medications is currently under review. The FDA (http://www.fda.gov/Drugs/DrugSafety/ucm256581.htm#Simvastatin_;06-08-2011) has warned against the use of high dose simvastatin as the risk of muscle injury increases exponentially with dose increase, though the cardiovascular outcomes do not differ for low or high dose use (Lancet. 2010; 376(9753):1658–69). As statins involve the CYP3A4-pathway the risk issues potentially relate to all statins.

References

  1. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–146.

    Article  PubMed  Google Scholar 

  2. Neaton JD, Wentworth DN, Cutler J, Stamler J, Kuller L. Risk factors for death from different types of stroke. Multiple Risk Factor Intervention Trial Research Group. Ann Epidemiol. 1993;3(5):493–9.

    Article  PubMed  CAS  Google Scholar 

  3. Meyer JS, Rauch GM, Rauch RA, Haque A, Crawford K. Cardiovascular and other risk factors for Alzheimer’s disease and vascular dementia. Ann N Y Acad Sci. 2000;903:411–23.

    Article  PubMed  CAS  Google Scholar 

  4. International statistical classification of diseases and related health problems, 10th revision. World Health Organization. 2007. http://www.who.int/classifications/apps/icd/icd10online/.

  5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.

    Article  PubMed  CAS  Google Scholar 

  6. Cupples LA, D’Agostino RB. Section 34: some risk factors related to the annual incidence of cardiovascular disease and death in pooled repeated biennial measurements. In: Kannel WB, Wolf PA, Garrison RJ, editors. Framingham Heart Study: 30 Year Follow-up. Bethesda, MD: US Department of Health and Human Services; 1987.

    Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  8. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  Google Scholar 

  9. Hachinski V. Vascular dementia: a radical redefinition. Dementia. 1994;5(3–4):130–2.

    PubMed  CAS  Google Scholar 

  10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  Google Scholar 

  11. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  Google Scholar 

  12. Lezak MD, Howieson DB, Loring DW, editors. Neuropsychological assessment. 4th ed. New York: Oxford University Press; 2004.

    Google Scholar 

  13. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Executive summary: heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 2010;121(7):948–54.

    Article  PubMed  Google Scholar 

  14. Franco OH, Peeters A, Bonneux L, de Laet C. Blood pressure in adulthood and life expectancy with cardiovascular disease in men and women: life course analysis. Hypertension. 2005;46(2):280–6.

    Article  PubMed  CAS  Google Scholar 

  15. Moser M, Setaro JF. Clinical practice. Resistant or difficult-to-control hypertension. N Engl J Med. 2006;355(4):385–92.

    Article  PubMed  CAS  Google Scholar 

  16. Waldstein SR, Katzel LI. Hypertension and cognitive function. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. p. 15–36.

    Google Scholar 

  17. Waldstein SR, Wendell CR, Hosey MM, Seliger SL, Katzel LI. Cardiovascular disease and neurocognitive function. In: Armstrong C, Morrow LA, editors. Handbook of medical neuropsychology: applications of cognitive neuroscience. New York: Springer; 2010.

    Google Scholar 

  18. Lande MB, Kaczorowski JM, Auinger P, Schwartz GJ, Weitzman M. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143(6):720–4.

    Article  PubMed  Google Scholar 

  19. Harrington F, Saxby BK, McKeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36(6):1079–82.

    Article  PubMed  CAS  Google Scholar 

  20. Elias MF, Wolf PA, D’Agostino RB, Cobb J, White LR. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol. 1993;138(6):353–64.

    PubMed  CAS  Google Scholar 

  21. Euser SM, van Bemmel T, Schram MT, Gussekloo J, Hofman A, Westendorp RG, et al. The effect of age on the association between blood pressure and cognitive function later in life. J Am Geriatr Soc. 2009;57(7):1232–7.

    Article  PubMed  Google Scholar 

  22. Kilander L, Nyman H, Boberg M, Hansson L, Lithell H. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension. 1998;31(3):780–6.

    Article  PubMed  CAS  Google Scholar 

  23. Kuo HK, Sorond F, Iloputaife I, Gagnon M, Milberg W, Lipsitz LA. Effect of blood pressure on cognitive functions in elderly persons. J Gerontol A Biol Sci Med Sci. 2004;59(11):1191–4.

    Article  PubMed  Google Scholar 

  24. Whitfield KE, Allaire JC, Gamaldo A, Aiken-Morgan AT, Sims R, Edwards C. Blood pressure and memory in older African Americans. Ethn Dis. 2008;18(2):181–6.

    PubMed  Google Scholar 

  25. Waldstein SR. Hypertension and neuropsychological function: a lifespan perspective. Exp Aging Res. 1995;21(4):321–52.

    Article  PubMed  CAS  Google Scholar 

  26. Bucur B, Madden DJ. Effects of adult age and blood pressure on executive function and speed of processing. Exp Aging Res. 2010;36(2):153–68.

    Article  PubMed  Google Scholar 

  27. Knecht S, Wersching H, Lohmann H, Bruchmann M, Duning T, Dziewas R, et al. High-normal blood pressure is associated with poor cognitive performance. Hypertension. 2008;51(3):663–8.

    Article  PubMed  CAS  Google Scholar 

  28. Elias PK, D’Agostino RB, Elias MF, Wolf PA. Blood pressure, hypertension, and age as risk factors for poor cognitive performance. Exp Aging Res. 1995;21(4):393–417.

    Article  PubMed  CAS  Google Scholar 

  29. Anson O, Paran E. Hypertension and cognitive functioning among the elderly: an overview. Am J Ther. 2005;12(4):359–65.

    Article  PubMed  Google Scholar 

  30. Elias MF, Robbins MA, Elias PK, Streeten DH. A longitudinal study of blood pressure in relation to performance on the Wechsler Adult Intelligence Scale. Health Psychol. 1998;17(6):486–93.

    Article  PubMed  CAS  Google Scholar 

  31. Starr JM, Deary IJ, Inch S, Cross S, MacLennan WJ. Blood pressure and cognitive decline in healthy old people. J Hum Hypertens. 1997;11(12):777–81.

    Article  PubMed  CAS  Google Scholar 

  32. Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. J Am Med Assoc. 1995;274(23):1846–51.

    Article  CAS  Google Scholar 

  33. Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension. 2005;45(3):374–9.

    Article  PubMed  CAS  Google Scholar 

  34. Elias PK, Elias MF, Robbins MA, Budge MM. Blood pressure-related cognitive decline: does age make a difference? Hypertension. 2004;44(5):631–6.

    Article  PubMed  CAS  Google Scholar 

  35. Roman GC. Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis. 2005;20 Suppl 2:91–100.

    PubMed  Google Scholar 

  36. Staessen JA, Richart T, Birkenhager WH. Less atherosclerosis and lower blood pressure for a meaningful life perspective with more brain. Hypertension. 2007;49(3):389–400.

    Article  PubMed  CAS  Google Scholar 

  37. Skoog I, Gustafson D. Update on hypertension and Alzheimer’s disease. Neurol Res. 2006;28(6):605–11.

    Article  PubMed  Google Scholar 

  38. Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J Intern Med. 2006;260(3):211–23.

    Article  PubMed  CAS  Google Scholar 

  39. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487–99.

    Article  PubMed  Google Scholar 

  40. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000;21:49–55.

    Article  PubMed  CAS  Google Scholar 

  41. Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64(2):277–81.

    Article  PubMed  CAS  Google Scholar 

  42. Axelsson J, Reinprecht F, Siennicki-Lantz A, Elmstahl S. Low ambulatory blood pressure is associated with lower cognitive function in healthy elderly men. Blood Press Monit. 2008;13(5):269–75.

    Article  PubMed  Google Scholar 

  43. Hestad K, Kveberg B, Engedal K. Low blood pressure is a better predictor of cognitive deficits than the apolipoprotein e4 allele in the oldest old. Acta Neurol Scand. 2005;111(5):323–8.

    Article  PubMed  CAS  Google Scholar 

  44. Guo Z, Viitanen M, Fratiglioni L, Winblad B. Low blood pressure and dementia in elderly people: the Kungsholmen project. BMJ. 1996;312(7034):805–8.

    Article  PubMed  CAS  Google Scholar 

  45. Maule S, Caserta M, Bertello C, Verhovez A, Naso D, Bisbocci D, et al. Cognitive decline and low blood pressure: the other side of the coin. Clin Exp Hypertens. 2008;30(8):711–9.

    Article  PubMed  CAS  Google Scholar 

  46. Swan GE, Carmelli D, Larue A. Systolic blood pressure tracking over 25 to 30 years and cognitive performance in older adults. Stroke. 1998;29(11):2334–40.

    Article  PubMed  CAS  Google Scholar 

  47. Molander L, Gustafson Y, Lovheim H. Low blood pressure is associated with cognitive impairment in very old people. Dement Geriatr Cogn Disord. 2010;29(4):335–41.

    Article  PubMed  Google Scholar 

  48. Paran E, Anson O, Reuveni H. Blood pressure and cognitive functioning among independent elderly. Am J Hypertens. 2003;16(10):818–26.

    Article  PubMed  Google Scholar 

  49. Morris MC, Scherr PA, Hebert LE, Bennett DA, Wilson RS, Glynn RJ, et al. Association between blood pressure and cognitive function in a biracial community population of older persons. Neuro­epidemiology. 2002;21(3):123–30.

    Article  PubMed  Google Scholar 

  50. Bohannon AD, Fillenbaum GG, Pieper CF, Hanlon JT, Blazer DG. Relationship of race/ethnicity and blood pressure to change in cognitive function. J Am Geriatr Soc. 2002;50(3):424–9.

    Article  PubMed  Google Scholar 

  51. Glynn RJ, Beckett LA, Hebert LE, Morris MC, Scherr PA, Evans DA. Current and remote blood pressure and cognitive decline. JAMA. 1999;281(5):438–45.

    Article  PubMed  CAS  Google Scholar 

  52. Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.

    Article  PubMed  CAS  Google Scholar 

  53. de la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 2004;3(3):184–90.

    Article  PubMed  Google Scholar 

  54. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  55. Johnson CL, Rifkind BM, Sempos CT, Carroll MD, Bachorik PS, Briefel RR, et al. Declining serum total cholesterol levels among US adults. The National Health and Nutrition Examination Surveys. JAMA. 1993;269(23):3002–8.

    Article  PubMed  CAS  Google Scholar 

  56. Hyre AD, Muntner P, Menke A, Raggi P, He J. Trends in ATP-III-defined high blood cholesterol prevalence, awareness, treatment and control among U.S. adults. Ann Epidemiol. 2007;17(7):548–55.

    Article  PubMed  Google Scholar 

  57. Carlsson CM, Nondahl DM, Klein BE, McBride PE, Sager MA, Schubert CR, et al. Increased atherogenic lipoproteins are associated with cognitive impairment: effects of statins and subclinical atherosclerosis. Alzheimer Dis Assoc Disord. 2009;23(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  58. Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol. 2002;59(3):378–84.

    Article  PubMed  Google Scholar 

  59. Teunissen CE, De Vente J, von Bergmann K, Bosma H, van Boxtel MP, De Bruijn C, et al. Serum cholesterol, precursors and metabolites and cognitive performance in an aging population. Neurobiol Aging. 2003;24(1):147–55.

    Article  PubMed  CAS  Google Scholar 

  60. Anstey KJ, Lipnicki DM, Low LF. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16(5):343–54.

    PubMed  Google Scholar 

  61. Solomon A, Kareholt I, Ngandu T, Wolozin B, Macdonald SW, Winblad B, et al. Serum total cholesterol, statins and cognition in non-demented elderly. Neurobiol Aging. 2009;30(6):1006–9.

    Article  PubMed  CAS  Google Scholar 

  62. Reynolds CA, Gatz M, Prince JA, Berg S, Pedersen NL. Serum lipid levels and cognitive change in late life. J Am Geriatr Soc. 2010;58(3):501–9.

    Article  PubMed  Google Scholar 

  63. Grodstein F. Cardiovascular risk factors and cognitive function. Alzheimers Dement. 2007;3:S16–22.

    Article  PubMed  Google Scholar 

  64. Reitz C, Tang MX, Luchsinger J, Mayeux R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol. 2004;61(5):705–14.

    Article  PubMed  Google Scholar 

  65. Dufouil C, Richard F, Fievet N, Dartigues JF, Ritchie K, Tzourio C, et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology. 2005;64(9):1531–8.

    Article  PubMed  CAS  Google Scholar 

  66. Tan ZS, Seshadri S, Beiser A, Wilson PW, Kiel DP, Tocco M, et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med. 2003;163(9):1053–7.

    Article  PubMed  CAS  Google Scholar 

  67. Kalmijn S, Foley D, White L, Burchfiel CM, Curb JD, Petrovitch H, et al. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study. Arterioscler Thromb Vasc Biol. 2000;20(10):2255–60.

    Article  PubMed  CAS  Google Scholar 

  68. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62(10):1556–60.

    Article  PubMed  Google Scholar 

  69. Stewart R, White LR, Xue QL, Launer LJ. Twenty-six-year change in total cholesterol levels and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2007;64(1):103–7.

    Article  PubMed  Google Scholar 

  70. Benton D. Do low cholesterol levels slow mental processing? Psychosom Med. 1995;57(1):50–3.

    PubMed  CAS  Google Scholar 

  71. Muldoon MF, Ryan CM, Matthews KA, Manuck SB. Serum cholesterol and intellectual performance. Psychosom Med. 1997;59(4):382–7.

    PubMed  CAS  Google Scholar 

  72. Henderson VW, Guthrie JR, Dennerstein L. Serum lipids and memory in a population based cohort of middle age women. J Neurol Neurosurg Psychiatry. 2003;74(11):1530–5.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang J, Muldoon MF, McKeown RE. Serum cholesterol concentrations are associated with visuomotor speed in men: findings from the third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr. 2004;80(2):291–8.

    PubMed  CAS  Google Scholar 

  74. West R, Beeri MS, Schmeidler J, Hannigan CM, Angelo G, Grossman HT, et al. Better memory functioning associated with higher total and low-density lipoprotein cholesterol levels in very elderly subjects without the apolipoprotein e4 allele. Am J Geriatr Psychiatry. 2008;16(9):781–5.

    Article  PubMed  Google Scholar 

  75. Sabbagh M, Zahiri HR, Ceimo J, Cooper K, Gaul W, Connor D, et al. Is there a characteristic lipid profile in Alzheimer’s disease? J Alzheimers Dis. 2004;6(6):585–9. Discussion 673–81.

    PubMed  CAS  Google Scholar 

  76. Lepara O, Valjevac A, Alajbegovic A, Zaciragic A, Nakas-Icindic E. Decreased serum lipids in patients with probable Alzheimer’s disease. Bosn J Basic Med Sci. 2009;9(3):215–20.

    PubMed  Google Scholar 

  77. Elias PK, Elias MF, D’Agostino RB, Sullivan LM, Wolf PA. Serum cholesterol and cognitive performance in the Framingham Heart Study. Psychosom Med. 2005;67(1):24–30.

    Article  PubMed  Google Scholar 

  78. Swan GE, LaRue A, Carmelli D, Reed TE, Fabsitz RR. Decline in cognitive performance in aging twins. Heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. Arch Neurol. 1992;49(5):476–81.

    Article  PubMed  CAS  Google Scholar 

  79. Solomon A, Kareholt I, Ngandu T, Winblad B, Nissinen A, Tuomilehto J, et al. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology. 2007;68(10):751–6.

    Article  PubMed  CAS  Google Scholar 

  80. Atzmon G, Gabriely I, Greiner W, Davidson D, Schechter C, Barzilai N. Plasma HDL levels highly correlate with cognitive function in exceptional longevity. J Gerontol A Biol Sci Med Sci. 2002;57(11):M712–5.

    Article  PubMed  Google Scholar 

  81. Launer LJ, White LR, Petrovitch H, Ross GW, Curb JD. Cholesterol and neuropathologic markers of AD: a population-based autopsy study. Neurology. 2001;57(8):1447–52.

    Article  PubMed  CAS  Google Scholar 

  82. Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Helkala EL, Haapala I, et al. Metabolic syndrome and cognitive function: a population-based follow-up study in elderly women. Dement Geriatr Cogn Disord. 2007;23(1):29–34.

    Article  PubMed  Google Scholar 

  83. Singh-Manoux A, Gimeno D, Kivimaki M, Brunner E, Marmot MG. Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife. The Whitehall II Study. Arterioscler Thromb Vasc Biol. 2008;28(8):1556–62.

    Article  PubMed  CAS  Google Scholar 

  84. Reitz C, Tang MX, Schupf N, Manly JJ, Mayeux R, Luchsinger JA. Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. Arch Neurol. 2010;67(12):1491–7.

    Article  PubMed  Google Scholar 

  85. Arntzen KA, Schirmer H, Wilsgaard T, Mathiesen EB. Impact of cardiovascular risk factors on cognitive function: the Tromso study. Eur J Neurol. 2011;18(5):737–43.

    Article  PubMed  CAS  Google Scholar 

  86. Wendell CR, Katzel LI, Rosenberger WF, Plamadeala V, Hosey MM, Waldstein SR. Plasma lipid levels and neuropsychological function: nonlinear relations and effect modification by age. J Int Neuropsychol Soc. 2011;17(Suppl S1):121.

    Google Scholar 

  87. Wendell CR, Waldstein SR, Ferrucci L, Zonderman A. Nonlinear associations between trajectories of total cholesterol and cognitive change over time: what’s good for the heart may not always be good for the brain. Psychosom Med. 2010;72(Abstract Suppl):A43.

    Google Scholar 

  88. Muldoon MF, Flory JD, Ryan CM. Serum cholesterol, the brain, and cognitive functioning. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. p. 37–59.

    Google Scholar 

  89. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA. 2001;98(10):5815–20.

    Article  PubMed  CAS  Google Scholar 

  90. Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res. 2011;50(1):62–74.

    Article  PubMed  CAS  Google Scholar 

  91. Rosendorff C, Beeri MS, Silverman JM. Cardiovascular risk factors for Alzheimer’s disease. Am J Geriatr Cardiol. 2007;16(3):143–9.

    Article  PubMed  Google Scholar 

  92. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  93. Despres JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ. 2001;322(7288):716–20.

    Article  PubMed  CAS  Google Scholar 

  94. Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch Intern Med. 1998;158(17):1855–67.

    Google Scholar 

  95. Wilson PW, Bozeman SR, Burton TM, Hoaglin DC, Ben-Joseph R, Pashos CL. Prediction of first events of coronary heart disease and stroke with consideration of adiposity. Circulation. 2008;118(2):124–30.

    Article  PubMed  Google Scholar 

  96. Cserjesi R, Molnar D, Luminet O, Lenard L. Is there any relationship between obesity and mental flexibility in children? Appetite. 2007;49(3):675–8.

    Article  PubMed  Google Scholar 

  97. Gunstad J, Paul RH, Cohen RA, Tate DF, Gordon E. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord. 2006;11(1):e15–9.

    PubMed  CAS  Google Scholar 

  98. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry. 2007;48(1):57–61.

    Article  PubMed  Google Scholar 

  99. Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord. 2003;27(2):260–8.

    Article  PubMed  CAS  Google Scholar 

  100. Waldstein SR, Katzel LI. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obes (Lond). 2006;30(1):201–7.

    Article  CAS  Google Scholar 

  101. Kuo HK, Jones RN, Milberg WP, Tennstedt S, Talbot L, Morris JN, et al. Cognitive function in normal-weight, overweight, and obese older adults: an analysis of the Advanced Cognitive Training for Independent and Vital Elderly cohort. J Am Geriatr Soc. 2006;54(1):97–103.

    Article  PubMed  Google Scholar 

  102. Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S. Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res. 2007;4(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  103. Dore GA, Elias MF, Robbins MA, Budge MM, Elias PK. Relation between central adiposity and cognitive function in the Maine-Syracuse Study: attenuation by physical activity. Ann Behav Med. 2008;35(3):341–50.

    Article  PubMed  Google Scholar 

  104. Gunstad J, Lhotsky A, Wendell CR, Ferrucci L, Zonderman AB. Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology. 2010;34(4):222–9.

    Article  PubMed  Google Scholar 

  105. Rosano C, Newman AB. Cardiovascular disease and risk of Alzheimer’s disease. Neurol Res. 2006;28(6):612–20.

    Article  PubMed  Google Scholar 

  106. Gustafson D. Adiposity indices and dementia. Lancet Neurol. 2006;5(8):713–20.

    Article  PubMed  Google Scholar 

  107. Whitmer RA. The epidemiology of adiposity and dementia. Curr Alzheimer Res. 2007;4(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  108. Luchsinger JA, Mayeux R. Adiposity and Alzheimer’s disease. Curr Alzheimer Res. 2007;4(2):127–34.

    Article  PubMed  CAS  Google Scholar 

  109. Barrett-Connor E. An introduction to obesity and dementia. Curr Alzheimer Res. 2007;4(2):97–101.

    Article  PubMed  CAS  Google Scholar 

  110. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2009;72(11):1030–1.

    Article  PubMed  Google Scholar 

  111. Gunstad J, Spitznagel MB, Paul RH, Cohen RA, Kohn M, Luyster FS, et al. Body mass index and neuropsychological function in healthy children and adolescents. Appetite. 2008;50(2–3):246–51.

    Article  PubMed  Google Scholar 

  112. Auyeung TW, Lee JS, Kwok T, Woo J. Physical frailty predicts future cognitive decline – a four-year prospective study in 2737 cognitively normal older adults. J Nutr Health Aging. 2011;15(8):690–4.

    Article  PubMed  CAS  Google Scholar 

  113. Sakakura K, Hoshide S, Ishikawa J, Momomura S, Kawakami M, Shimada K, et al. Association of body mass index with cognitive function in elderly hypertensive Japanese. Am J Hypertens. 2008;21(6):627–32.

    Article  PubMed  Google Scholar 

  114. Buchman AS, Wilson RS, Bienias JL, Shah RC, Evans DA, Bennett DA. Change in body mass index and risk of incident Alzheimer disease. Neurology. 2005;65(6):892–7.

    Article  PubMed  CAS  Google Scholar 

  115. Stewart R, Masaki K, Xue QL, Peila R, Petrovitch H, White LR, et al. A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia Aging Study. Arch Neurol. 2005;62(1):55–60.

    Article  PubMed  Google Scholar 

  116. Barrett-Connor E, Edelstein S, Corey-Bloom J, Wiederholt W. Weight loss precedes dementia in community-dwelling older adults. J Nutr Health Aging. 1998;2(2):113–4.

    PubMed  CAS  Google Scholar 

  117. Sturman MT, de Leon CF, Bienias JL, Morris MC, Wilson RS, Evans DA. Body mass index and cognitive decline in a biracial community population. Neurology. 2008;70(5):360–7.

    Article  PubMed  CAS  Google Scholar 

  118. Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study. Am J Clin Nutr. 2009;89(2):601–7.

    Article  PubMed  CAS  Google Scholar 

  119. Jagust W. What can imaging reveal about obesity and the brain? Curr Alzheimer Res. 2007;4(2):135–9.

    Article  PubMed  CAS  Google Scholar 

  120. Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol. 2005;5:23.

    Article  PubMed  Google Scholar 

  121. Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ. Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol. 2008;63(5):652–7.

    Article  PubMed  Google Scholar 

  122. Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord. 2000;24 Suppl 2:S80–5.

    Article  PubMed  CAS  Google Scholar 

  123. Ren J. Leptin and hyperleptinemia – from friend to foe for cardiovascular function. J Endocrinol. 2004;181(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  124. Sweat V, Starr V, Bruehl H, Arentoft A, Tirsi A, Javier E, et al. C-reactive protein is linked to lower cognitive performance in overweight and obese women. Inflammation. 2008;31(3):198–207.

    Article  PubMed  CAS  Google Scholar 

  125. Kerwin DR, Gaussoin SA, Chlebowski RT, Kuller LH, Vitolins M, Coker LH, et al. Interaction between body mass index and central adiposity and risk of incident cognitive impairment and dementia: results from the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2011;59(1):107–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Adapted in part from: (a) Waldstein SR, Wendell CR, Hosey MM, Seliger SL, Katzel LI. Cardiovascular disease and neurocognitive function. In: Armstrong C, Morrow LA, editors. Handbook of medical neuropsychology: applications of cognitive neuroscience. New York: Springer; 2010, (b) Waldstein SR, Wendell CR, Katzel LI. Hypertension and neurocognitive function: blood pressure and beyond. In: Whitfield K, editor. Annual review of gerontology and geriatrics. New York: Springer; 2010. p. 113–132, and (c) Waldstein SR, Wendell CR, Hosey MM. Applications of neurocognitive assessment in behavioral medicine. In: Steptoe A, editor. Handbook of behavioral medicine. New York: Springer; 2010. p. 125–36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shari R. Waldstein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wendell, C.R., Katzel, L.I., Waldstein, S.R. (2013). Nonlinear Relations of Cardiovascular Risk Factors to Neuropsychological Function and Dementia. In: Sturmberg, J., Martin, C. (eds) Handbook of Systems and Complexity in Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4998-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4998-0_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4997-3

  • Online ISBN: 978-1-4614-4998-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics