Tumor Oxygen Measurements and Personalized Medicine

  • Paul Okunieff
  • Walter O’Dell
  • Mei Zhang
  • Lurong Zhang
  • David Maguire
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 765)


Tumor hypoxia is probably the most important not yet measurable factor that predicts the outcome of cancer therapy. Hypoxic tumors are resistant to radiation, chemotherapy, and surgery. They signal tumor cells to grow, invade, survive cytotoxic-factor assault, and increase metastatic activity. Therapies aimed at reversing hypoxia-related treatment resistance or normalizing hypoxia are proven effective with level 1 evidence. The weak link remains the lack of satisfactory methods of measurement of tumor oxygenation.


Personalized medicine Tumor hypoxia Tumor resistance 



We thank Kate Casey-Sawicki for editing and preparing this manuscript for publication.


  1. 1.
    Perez EA, Reinholz MM, Hillman DW et al (2010) HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol 28:4307–4315CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMedGoogle Scholar
  3. 3.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20CrossRefPubMedGoogle Scholar
  4. 4.
    Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 85–105Google Scholar
  5. 5.
    Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91CrossRefPubMedGoogle Scholar
  6. 6.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239CrossRefPubMedGoogle Scholar
  7. 7.
    Vaupel P, Briest S, Höckel M (2002) Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr 152:334–342CrossRefPubMedGoogle Scholar
  8. 8.
    Gatenby RA, Kessler HB, Rosenblum JS et al (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838CrossRefPubMedGoogle Scholar
  9. 9.
    Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24CrossRefPubMedGoogle Scholar
  10. 10.
    Nordsmark M, Alsner J, Keller J et al (2001) Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515Google Scholar
  12. 12.
    Movsas B, Chapman JD, Hanlon AL et al (2002) Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology 60:634–639CrossRefGoogle Scholar
  13. 13.
    Wang JZ, Li XA, Mayr NA (2006) Dose escalation to combat hypoxia in prostate cancer: a radiobiological study on clinical data. Br J Radiol 79:905–911CrossRefGoogle Scholar
  14. 14.
    Rampling R, Cruickshank G, Lewis AD et al (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29:427–431CrossRefGoogle Scholar
  15. 15.
    Eschmann S-M, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260Google Scholar
  16. 16.
    Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104CrossRefGoogle Scholar
  17. 17.
    Karar J, Maity A (2009) Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther 8:1994–2001CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koh WJ, Rasey JS, Evans ML et al (1992) Imaging of hypoxia in human tumors with [F-18] fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199–212CrossRefGoogle Scholar
  19. 19.
    Mortensen LS, Buus S, Nordsmark M et al (2010) Identifying hypoxia in human tumors: a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol 49:934–940CrossRefGoogle Scholar
  20. 20.
    Varia MA, Calkins-Adams DP, Rinker LH et al (1998) Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 71:270–277CrossRefPubMedGoogle Scholar
  21. 21.
    Hlatky L, Ring CS, Sachs RK (1989) Detection of an intrinsic marker in hypoxic cells. Cancer Res 49:5162–5166PubMedGoogle Scholar
  22. 22.
    Chou L-W, Wang J, Chang P-L et al (2011) Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model. Arthritis Res Ther 13:R90CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Said HM, Supuran CT, Hageman C et al (2010) Modulation of carbonic anhydrase 9 (CA9) in human brain cancer. Curr Pharm Des 16:3288–3299CrossRefPubMedGoogle Scholar
  24. 24.
    Cangul H (2004) Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet 5:27CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ding I, Okunieff P, Salnikow K et al (2003) A new intrinsic hypoxia marker in esophageal cancer. Adv Exp Med Biol 540:227–233CrossRefPubMedGoogle Scholar
  26. 26.
    Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. A review. Acta Oncol 34:571–587CrossRefPubMedGoogle Scholar
  27. 27.
    Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – a systematic review and meta-analysis. Radiother Oncol 100(1):22–32CrossRefPubMedGoogle Scholar
  28. 28.
    Kotas M, Schmitt P, Jakob PM et al (2009) Monitoring of tumor oxygenation changes in head-and-neck carcinoma patients breathing a hyperoxic hypercapnic gas mixture with a noninvasive MRI technique. Strahlenther Onkol 185:19–26CrossRefPubMedGoogle Scholar
  29. 29.
    Fan B, Wang X-Y, Yang X-D et al (2011) Blood oxygen level-dependent MRI for the monitoring of neoadjuvant chemotherapy in breast carcinoma: initial experience. Magn Reson Imaging 29:153–159CrossRefPubMedGoogle Scholar
  30. 30.
    Pacheco-Torres J, López-Larrubia P, Ballesteros P et al (2011) Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed 24:1–16CrossRefPubMedGoogle Scholar
  31. 31.
    Diepart C, Magat J, Jordan BF et al (2011) In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry. NMR Biomed 24:458–463CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salmon HW, Siemann DW (2004) Utility of 19F MRS detection of the hypoxic cell marker EF5 to assess cellular hypoxia in solid tumors. Radiother Oncol 73:359–366CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Epel B, Haney CR, Hleihel D et al (2010) Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe delivery. Med Phys 37:2553–2559CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Finlay JC, Foster TH (2004) Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation. Med Phys 31:1949–1959CrossRefGoogle Scholar
  35. 35.
    Austin T, Gibson AP, Branco G et al (2006) Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain. Neuroimage 31:1426–1433CrossRefGoogle Scholar
  36. 36.
    Murkin JM, Adams SJ, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104:51–58CrossRefGoogle Scholar
  37. 37.
    Taber KH, Black KJ, Hurley RA (2005) Blood flow imaging of the brain: 50 years experience. J Neuropsychiatry Clin Neurosci 17:441–446CrossRefGoogle Scholar
  38. 38.
    Lodge MA, Jacene HA, Pili R et al (2008) Reproducibility of tumor blood flow quantification with 15O-water PET. J Nucl Med 49:1620–1627CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Okunieff P, Lee J, Vaupel P (1992) Measurement of human tumor blood flow: a positron ­technique using an artifact of high energy radiation therapy. Adv Exp Med Biol 317:169–176CrossRefGoogle Scholar
  40. 40.
    Dewhirst MW, Poulson JM, Yu D et al (2005) Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy. Int J Radiat Oncol Biol Phys 61:480–491CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paul Okunieff
    • 1
  • Walter O’Dell
    • 1
  • Mei Zhang
    • 1
  • Lurong Zhang
    • 1
  • David Maguire
    • 1
  1. 1.Department of Radiation OncologyUniversity of FloridaGainesvilleUSA

Personalised recommendations