Skip to main content

DCX-Expressing Neurons Decrease in the Retrosplenial Cortex after Global Brain Ischemia

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXIV

Abstract

Many studies have demonstrated cognitive function disorders including space learning disorders after global brain ischemia (GBI). Previous research on space perception and learning has indicated that the retrosplenial cortex (RS) is strongly involved. We performed immunostaining with doublecortin (DCX) for neurons with plasticity potential in the RS and investigated the neuronal numbers to assess the changes of plasticity in the RS following GBI. We employed male Sprague–Dawley rats and carried out bilateral carotid arterial occlusion for 10 min as a GBI model (control, n = 5; GBI model, n = 5). We counted the right and left hemispheres separately on two serial sections, for a total of four regions per animal to examine the differences in expression related to GBI. Additionally, we performed Fluoro-Jade B (FJB) staining to investigate the cause of any DCX-expressing neuron decrease. The total number of DCX-expressing neurons was 1,652 and 912 in the controls and GBI model, respectively. The mean number of DCX-expressing neurons per unit area was significantly lower in the GBI model than in the controls. FJB positive neurons were not found in the RS, while many were present in the ­hippocampus CA1 after GBI. The decrease of DCX-expressing neurons in the RS indicated a plasticity decrease following GBI. The lack of FJB positive neurons in the RS after GBI suggested that the decrease of DCX-expressing neurons in the RS was not due to neuronal cell death in contrast to the hippocampus CA1, while the FJB positive neurons in the hippocampus indicated a delayed neuronal cell death as observed in many previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia JH (1992) The evolution of brain infarcts: a review. J Neuropathol Exp Neurol 51:387–393

    Article  CAS  PubMed  Google Scholar 

  2. Mossakowski MJ et al (1994) Abnormalities of the blood–brain barrier in global cerebral ischemia in rats due to experimental cardiac arrest. Acta Neurochir Suppl (Wien) 60:274–276

    CAS  Google Scholar 

  3. Teschendorf P et al (2008) Time course of caspase activation in selectively vulnerable brain areas following global cerebral ischemia due to cardiac arrest in rats. Neurosci Lett 448:194–199

    Article  CAS  PubMed  Google Scholar 

  4. Cummings JL et al (1984) Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology 34:679–681

    Article  CAS  PubMed  Google Scholar 

  5. Auer RN et al (1989) Neurobehavioral deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus. J Neurosci 9:1641–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gionet TX et al (1991) Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats. Stroke 22:1040–1047

    Article  CAS  PubMed  Google Scholar 

  7. Rod MR et al (1990) The relationship of structural ischemic brain damage to neurobehavioural deficit: the effect of postischemic MK-801. Can J Psychol 44:196–209

    Article  CAS  PubMed  Google Scholar 

  8. Kiyota Y et al (1991) Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Res 538:295–302

    Article  CAS  PubMed  Google Scholar 

  9. Green EJ et al (1992) Protective effects of brain hypothermia on behavior and histopathology following global cerebral ischemia in rats. Brain Res 580:197–204

    Article  CAS  PubMed  Google Scholar 

  10. Jaspers RM et al (1990) Spatial learning is affected by transient occlusion of common carotid arteries (2VO): comparison of behavioural and histopathological changes after ‘2VO’ and ‘four-vessel-occlusion’ in rats. Neurosci Lett 117:149–153

    Article  CAS  PubMed  Google Scholar 

  11. Devinsky O et al (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    Article  PubMed  Google Scholar 

  12. Desgranges B et al (1998) The functional neuroanatomy of episodic memory: the role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage 8:198–213

    Article  CAS  PubMed  Google Scholar 

  13. Maddock RJ (1999) The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci 22:310–316

    Article  CAS  PubMed  Google Scholar 

  14. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42:225–238

    Article  CAS  PubMed  Google Scholar 

  15. Friocourt G et al (2007) Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci 27:3875–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiong K et al (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol 211:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luzzati F et al (2008) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041

    Article  PubMed  Google Scholar 

  18. Cai Y et al (2009) Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol 216:342–356

    Article  CAS  PubMed  Google Scholar 

  19. Garden DL et al (2009) Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. Brain 132:1847–1857

    Article  PubMed  Google Scholar 

  20. Schmued LC et al (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  21. Paxinos G et al (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San Diego, CA

    Google Scholar 

  22. Burda J et al (2006) Delayed postconditioning initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell Mol Neurobiol 26:1141–1151

    Article  PubMed  Google Scholar 

  23. Chen LL et al (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23

    Article  CAS  PubMed  Google Scholar 

  24. Cho J et al (2001) Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci 115:3–25

    Article  CAS  PubMed  Google Scholar 

  25. Yagita Y et al (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (C-20591725) and by the Strategic Research Program for Brain Science (MEXT), a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (C-18591614) and a grant for the promotion of industry–university collaboration at Nihon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Kutsuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Kutsuna, N. et al. (2013). DCX-Expressing Neurons Decrease in the Retrosplenial Cortex after Global Brain Ischemia. In: Welch, W.J., Palm, F., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXIV. Advances in Experimental Medicine and Biology, vol 765. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4989-8_17

Download citation

Publish with us

Policies and ethics