History of Diffuse Optical Spectroscopy of Human Tissue

  • Theodore J. Huppert
Part of the Bioanalysis book series (BIOANALYSIS, volume 3)


Diffuse optical spectroscopy is a noninvasive method that uses low levels of near-infrared light to measure blood oxygenation in the brain. Over the last 35 years, the number of diffuse optical studies and the range of clinical and research applications have grown steadily. Compared to other neuroimaging methods to measure cerebral blood oxygenation, such as magnetic resonance imaging or positron emission tomography, diffuse optical imaging (DOI) is more cost effective and often uses small portable instrumentation. Wireless and bedside optical systems are currently produced commercially. The portability of these instruments has extended the use of optical methods into several unique applications including brain imaging in infants and children, studies of the brain during ambulatory tasks such as walking or balance, and interoperative brain assessments. This chapter will introduce the history and basic principles of DOI including discussion of the factors contributing to the optical properties of tissue, instrumentation, and an overview of applications of the technology.


Positron Emission Tomography Pulse Oximeter Fluence Rate Diffuse Optical Imaging Reduced Scattering Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cope M, Delpy DT, Reynolds EO, Wray S, Wyatt J, van der Zee P (1988) Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol 222:183–189CrossRefGoogle Scholar
  2. 2.
    Delpy DT, Cope MC, Cady EB, Wyatt JS, Hamilton PA, Hope PL, Wray S, Reynolds EO (1987) Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy. Scand J Clin Lab Invest Suppl 188:9–17Google Scholar
  3. 3.
    Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M et al (1988) Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci U S A 85(14):4971–4975ADSCrossRefGoogle Scholar
  4. 4.
    Hoshi Y (2003) Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40(4):511–520MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hoshi Y, Tamura M (1993) Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 75(4):1842–1846Google Scholar
  6. 6.
    Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20(10):435–442CrossRefGoogle Scholar
  7. 7.
    Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267ADSCrossRefGoogle Scholar
  8. 8.
    De Blasi RA, Quaglia E, Gasparetto A, Ferrari M (1992) Muscle oxygenation by fast near infrared spectrophotometry (NIRS) in ischemic forearm. Adv Exp Med Biol 316:163–172CrossRefGoogle Scholar
  9. 9.
    Chance B, Bank W (1995) Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue. Biochim Biophys Acta 1271(1):7–14CrossRefGoogle Scholar
  10. 10.
    Boushel R, Piantadosi CA (2000) Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168(4):615–622CrossRefGoogle Scholar
  11. 11.
    Colier WN, van Haaren NJ, Oeseburg B (1995) A comparative study of two near infrared spectrophotometers for the assessment of cerebral haemodynamics. Acta Anaesthesiol Scand Suppl 107:101–105CrossRefGoogle Scholar
  12. 12.
    Torella F, Cowley R, Thorniley MS, McCollum CN (2002) Monitoring blood loss with near infrared spectroscopy. Comp Biochem Physiol A Mol Integr Physiol 132(1):199–203CrossRefGoogle Scholar
  13. 13.
    Hyttel-Sorensen S, Sorensen LC, Riera J, Greisen G (2011) Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm. Biomed Opt Express 2(11):3047–3057, PMCID:3207374CrossRefGoogle Scholar
  14. 14.
    Reed CA, Baker RS, Lam CT, Hilshorst JL, Ferguson R, Lombardi J, Eghtesady P (2011) Application of near-infrared spectroscopy during fetal cardiac surgery. J Surg Res 171(1):159–163CrossRefGoogle Scholar
  15. 15.
    van Bel F, Lemmers P, Naulaers G (2008) Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 94(4):237–244CrossRefGoogle Scholar
  16. 16.
    Adcock LM, Wafelman LS, Hegemier S, Moise AA, Speer ME, Contant CF, Goddard-Finegold J (1999) Neonatal intensive care applications of near-infrared spectroscopy. Clin Perinatol 26(4):893–903, ixGoogle Scholar
  17. 17.
    Nicklin SE, Hassan IA, Wickramasinghe YA, Spencer SA (2003) The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy. Arch Dis Child Fetal Neonatal Ed 88(4):F263–F268, PMCID:1721587CrossRefGoogle Scholar
  18. 18.
    Greisen G (2006) Is near-infrared spectroscopy living up to its promises? Semin Fetal Neonatal Med 11(6):498–502CrossRefGoogle Scholar
  19. 19.
    Zeff BW, White BR, Dehghani H, Schlaggar BL, Culver JP (2007) Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography. Proc Natl Acad Sci U S A 104(29):12169–12174ADSCrossRefGoogle Scholar
  20. 20.
    Hoppe-Seyler F (1866) Über die Oxydation in lebenden Blute. Med Chem Untersuch Lab 1:133–140Google Scholar
  21. 21.
    Stokes GG (1864) On the reduction and oxidation of the colouring matter of the blood. Proc R Soc Lond 13:355–364Google Scholar
  22. 22.
    Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185(4711):416–422ADSCrossRefGoogle Scholar
  23. 23. (1962) The Nobel Prize in Chemistry 1962. [cited 2012 March 22]Google Scholar
  24. 24.
    Severinghaus JW, Astrup PB (1986) History of blood gas analysis. V. Oxygen measurement. J Clin Monit 2(3):174–189CrossRefGoogle Scholar
  25. 25.
    Nicolai L (1932) Uber Sichtbarmachung, Verlauf und chemische Kinetik der Oxyhemoglobinreduktion im lebenden Gewebe, besonders in der menschlichen Haut. Arch Ges Physiol 229:372–389CrossRefGoogle Scholar
  26. 26.
    Kramer K (1935) Ein Verfahren zur fortlaufenden Messung des Sauerstoffgehaltes im stromenden Blute an uner6ffneten Gefassen. Z Biol 96:61–75Google Scholar
  27. 27.
    Severinghaus JW, Astrup PB (1986) History of blood gas analysis. VI. Oximetry. J Clin Monit 2(4):270–288CrossRefGoogle Scholar
  28. 28.
    Severinghaus JW (2007) Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg 105(6 suppl):S1–S4, tables of contentsCrossRefGoogle Scholar
  29. 29.
    Nagamitsu S, Yamashita Y, Tanaka H, Matsuishi T (2012) Functional near-infrared spectroscopy studies in children. Biopsychosoc Med 6(1):7CrossRefGoogle Scholar
  30. 30.
    Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2): 921–-35Google Scholar
  31. 31.
    Smith M (2011) Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci 369(1955):4452–4469ADSCrossRefGoogle Scholar
  32. 32.
    Bourdillon N, Mollard P, Letournel M, Beaudry M, Richalet JP (2009) Interaction between hypoxia and training on NIRS signal during exercise: contribution of a mathematical model. Respir Physiol Neurobiol 169(1):50–61CrossRefGoogle Scholar
  33. 33.
    Durduran T, Choe R, Culver JP, Zubkov L, Holboke MJ, Giammarco J, Chance B, Yodh AG (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47(16):2847–2861CrossRefGoogle Scholar
  34. 34.
    Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50(4):R1–R43ADSCrossRefGoogle Scholar
  35. 35.
    Boverman G, Miller EL, Li A, Zhang Q, Chaves T, Brooks DH, Boas DA (2005) Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information. Phys Med Biol 50(17):3941–3956CrossRefGoogle Scholar
  36. 36.
    Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson JJ, Tosteson TD, Poplack SP, Paulsen KD (2006) In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction. Acad Radiol 13(2):195–202CrossRefGoogle Scholar
  37. 37.
    Enfield LC, Gibson AP, Hebden JC, Douek M (2009) Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 4(3):219–233CrossRefGoogle Scholar
  38. 38.
    Choe R (2009) Diffuse optical tomography & spectroscopy in breast cancer characterization & therapy monitoring at UPENN. Conf Proc IEEE Eng Med Biol Soc 2009:6335–6337Google Scholar
  39. 39.
    Irvine WM, Pollack JB (1968) Infrared optical properties of water and ice spheres. Icarus 8:324–360ADSCrossRefGoogle Scholar
  40. 40.
    Kopelevich OV (1976) Optical properties of pure water in the 250-600nm range. Opt Spectrosc 41:391–392ADSGoogle Scholar
  41. 41.
    Palmer KF, Williams D (1974) Optical properties of water in the near infrared. J Opt Soc Am 64:1107–1110ADSCrossRefGoogle Scholar
  42. 42.
    van Veen RLP, Sterenborg HJCM, Pifferi A, Torricelli A, Cubeddu R (2004) Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. in OSA Annual BIOMED Topical MeetingGoogle Scholar
  43. 43.
    Sarna T, Sealy R (1984) Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin. Photochem Photobiol 39:69–74CrossRefGoogle Scholar
  44. 44.
    Takatani S, Graham MD (1987) Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans Biomed Eng 26:656–664CrossRefGoogle Scholar
  45. 45.
    Moaveni MK (1970) A multiple scattering field theory applied to whole blood, in Dept. of Electrical Engineering. University of WashingtonGoogle Scholar
  46. 46.
  47. 47.
    Heinrich U (1981) Untersuchungen zur qualitativen photometrischen analyse der redox-zustande der atmungskette in vitro und in vivo am beispiel des gehirns., in Abteilung fur Biologie. Ruhr-Universitat BochumGoogle Scholar
  48. 48.
  49. 49.
    Strangman G, Franceschini MA, Boas DA (2003) Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage 18(4):865–879CrossRefGoogle Scholar
  50. 50.
    Simpson CR, Kohl M, Essenpreis M, Cope M (1998) Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 43(9):2465–2478CrossRefGoogle Scholar
  51. 51.
    Firbank M, Hiraoka M, Essenpreis M, Delpy DT (1993) Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys Med Biol 38(4):503–510CrossRefGoogle Scholar
  52. 52.
    Hillman EM (2002) Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications. In: Department of medical physics and bioengineering. University College London, LondonGoogle Scholar
  53. 53.
    Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185ADSCrossRefGoogle Scholar
  54. 54.
    van-der-Zee P (1992) Measurement and modelling of the optical properties of human tissue in the near infrared. In: Department of medical physics and bioengineering. University College London, LondonGoogle Scholar
  55. 55.
    Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD (1998) Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res 43(1):34–39CrossRefGoogle Scholar
  56. 56.
    Te Velde EA, Veerman T, Subramaniam V, Ruers T (2010) The use of fluorescent dyes and probes in surgical oncology. Eur J Surg Oncol 36(1):6–15CrossRefGoogle Scholar
  57. 57.
    Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138CrossRefGoogle Scholar
  58. 58.
    van den Berg NS, van Leeuwen FW, van der Poel HG (2012) Fluorescence guidance in urologic surgery. Curr Opin Urol 22(2):109–120CrossRefGoogle Scholar
  59. 59.
    Mizuno S, Isaji S (2010) Indocyanine green (ICG) fluorescence imaging-guided cholangiography for donor hepatectomy in living donor liver transplantation. Am J Transplant 10(12):2725–2726CrossRefGoogle Scholar
  60. 60.
    Kleine M, Joahnning K, Kousoulas L, Schrem H, Lehner F, Bektas H, Klempnauer J, Kaaden S (2011) Observations with impact on the indication for kinetic therapy in critically ill liver transplant patients. Ann Transplant 16(4):25–31Google Scholar
  61. 61.
    Ren Z, Xu Y, Zhu S (2011) Indocyanine green retention test avoiding liver failure after hepatectomy for hepatolithiasis. Hepatogastroenterology 59:115–116Google Scholar
  62. 62.
    Mohnle P, Kilger E, Adnan L, Beiras-Fernandez A, Vicol C, Weis F (2012) Indocyanine green clearance after cardiac surgery: the impact of cardiopulmonary bypass. Perfusion 27:292–299CrossRefGoogle Scholar
  63. 63.
    Yu G, Floyd TF, Durduran T, Zhou C, Wang J, Detre JA, Yodh AG (2007) Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI. Opt Express 15(3):1064–1075ADSCrossRefGoogle Scholar
  64. 64.
    Yodh AG (2009) Diffuse optics for monitoring brain hemodynamics. Conf Proc IEEE Eng Med Biol Soc 2009:1991–1993Google Scholar
  65. 65.
    Durduran T, Zhou C, Buckley EM, Kim MN, Yu G, Choe R, Gaynor JW, Spray TL, Durning SM, Mason SE, Montenegro LM, Nicolson SC, Zimmerman RA, Putt ME, Wang J, Greenberg JH, Detre JA, Yodh AG, Licht DJ (2010) Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects. J Biomed Opt 15(3):037004, PMCID:2887915CrossRefGoogle Scholar
  66. 66.
    Kim MN, Durduran T, Frangos S, Edlow BL, Buckley EM, Moss HE, Zhou C, Yu G, Choe R, Maloney-Wilensky E, Wolf RL, Grady MS, Greenberg JH, Levine JM, Yodh AG, Detre JA, Kofke WA (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180, PMCID:2844468CrossRefGoogle Scholar
  67. 67.
    Gratton G, Fabiani M, Corballis PM, Hood DC, Goodman-Wood MR, Hirsch J, Kim K, Friedman D, Gratton E (1997) Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI. Neuroimage 6(3):168–180CrossRefGoogle Scholar
  68. 68.
    Gratton G, Fabiani M, Goodman-Wood MR, Desoto MC (1998) Memory-driven processing in human medial occipital cortex: an event-related optical signal (EROS) study. Psychophysiology 35(3):348–351CrossRefGoogle Scholar
  69. 69.
    Gratton G, Fabiani M (2003) The event-related optical signal (EROS) in visual cortex: replicability, consistency, localization, and resolution. Psychophysiology 40(4):561–571CrossRefGoogle Scholar
  70. 70.
    Radhakrishnan H, Vanduffel W, Deng HP, Ekstrom L, Boas DA, Franceschini MA (2009) Fast optical signal not detected in awake behaving monkeys. Neuroimage 45(2):410–419, PMCID:2648855CrossRefGoogle Scholar
  71. 71.
    Beer A, Lambert J (1854) Einleitung in die höhere Optik (Introduction to the Higher Optical)Google Scholar
  72. 72.
    Bouguer P (1729) Essai d’Optique, sur la gradation de la lumiere. Paris, FranceGoogle Scholar
  73. 73.
    Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33(12):1433–1442CrossRefGoogle Scholar
  74. 74.
    Haskell RC, Svaasand LO, Tsay TT, Feng TC, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A Opt Image Sci Vis 11(10):2727–2741ADSCrossRefGoogle Scholar
  75. 75.
    Flock ST, Wilson BC, Patterson MS (1989) Monte Carlo modeling of light propagation in highly scattering tissues–II: comparison with measurements in phantoms. IEEE Trans Biomed Eng 36(12):1169–1173CrossRefGoogle Scholar
  76. 76.
    Flock ST, Patterson MS, Wilson BC, Wyman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissue–I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36(12):1162–1168CrossRefGoogle Scholar
  77. 77.
    Hiraoka M, Firbank M, Essenpreis M, Cope M, Arridge SR, van der Zee P, Delpy DT (1993) A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Phys Med Biol 38(12):1859–1876CrossRefGoogle Scholar
  78. 78.
    Wang L, Jacques SL, Zheng L (1995) MCML–Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47(2):131–146CrossRefGoogle Scholar
  79. 79.
    Quan G, Gong H, Deng Y, Fu J, Luo Q (2011) Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units. J Biomed Opt 16(2):026018CrossRefGoogle Scholar
  80. 80.
    Dehghani H, Eames ME, Yalavarthy PK, Davis SC, Srinivasan S, Carpenter CM, Pogue BW, Paulsen KD (2008) Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Commun Numer Methods Eng 25(6):711–732, PMCID:2826796MathSciNetCrossRefGoogle Scholar
  81. 81.
    Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, Maulik D, Stankovic MR (1999) Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol 44(6):1543–1563CrossRefGoogle Scholar
  82. 82.
    Hueber DM, Franceschini MA, Ma HY, Zhang Q, Ballesteros JR, Fantini S, Wallace D, Ntziachristos V, Chance B (2001) Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument. Phys Med Biol 46(1):41–62CrossRefGoogle Scholar
  83. 83.
    Boas D (1996) Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications. In: Physics. University of PennsylvaniaGoogle Scholar
  84. 84.
    Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, Zhou C, Yodh AG (2004) Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett 29(15):1766–1768ADSCrossRefGoogle Scholar
  85. 85.
    Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201CrossRefGoogle Scholar
  86. 86.
    Durduran T, Choe R, Yu G, Zhou C, Tchou JC, Czerniecki BJ, Yodh AG (2005) Diffuse optical measurement of blood flow in breast tumors. Opt Lett 30(21):2915–2917ADSCrossRefGoogle Scholar
  87. 87.
    Sunar U, Quon H, Durduran T, Zhang J, Du J, Zhou C, Yu G, Choe R, Kilger A, Lustig R, Loevner L, Nioka S, Chance B, Yodh AG (2006) Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study. J Biomed Opt 11(6):064021CrossRefGoogle Scholar
  88. 88.
    Zhou C, Choe R, Shah N, Durduran T, Yu G, Durkin A, Hsiang D, Mehta R, Butler J, Cerussi A, Tromberg BJ, Yodh AG (2007) Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J Biomed Opt 12(5):051903CrossRefGoogle Scholar
  89. 89.
    Edlow BL, Kim MN, Durduran T, Zhou C, Putt ME, Yodh AG, Greenberg JH, Detre JA (2010) The effects of healthy aging on cerebral hemodynamic responses to posture change. Physiol Meas 31(4):477–495CrossRefGoogle Scholar
  90. 90.
    Fantini S, Franceschini MA, Fishkin JB, Barbieri B, Gratton E (1994) Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique. Appl Opt 33(22):5204–5213ADSCrossRefGoogle Scholar
  91. 91.
    Obrig H, Villringer A (2003) Beyond the visible—imaging the human brain with light. J Cereb Blood Flow Metab 23(1):1–18CrossRefGoogle Scholar
  92. 92.
    Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24(4):495–505CrossRefGoogle Scholar
  93. 93.
    Toet MC, Lemmers PM (2009) Brain monitoring in neonates. Early Hum Dev 85(2):77–84CrossRefGoogle Scholar
  94. 94.
    Moerman A, Wouters P (2010) Near-infrared spectroscopy (NIRS) monitoring in contemporary anesthesia and critical care. Acta Anaesthesiol Belg 61(4):185–194Google Scholar
  95. 95.
    Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34(3):269–284CrossRefGoogle Scholar
  96. 96.
    Hoshi Y (2011) Towards the next generation of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci 369(1955):4425–4439MathSciNetADSMATHCrossRefGoogle Scholar
  97. 97.
    Pellicer A, Bravo Mdel C (2011) Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med 16(1):42–49CrossRefGoogle Scholar
  98. 98.
    Highton D, Elwell C, Smith M (2010) Noninvasive cerebral oximetry: is there light at the end of the tunnel? Curr Opin Anaesthesiol 23(5):576–581CrossRefGoogle Scholar
  99. 99.
    Kasman N, Brady K (2011) Cerebral oximetry for pediatric anesthesia: why do intelligent clinicians disagree? Paediatr Anaesth 21(5):473–478CrossRefGoogle Scholar
  100. 100.
    Chen CS, Leu BK, Liu K (1996) Detection of cerebral desaturation during cardiopulmonary bypass by cerebral oximetry. Acta Anaesthesiol Sin 34(4):173–178Google Scholar
  101. 101.
    Nemoto EM, Yonas H, Kassam A (2000) Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 28(4):1052–1054CrossRefGoogle Scholar
  102. 102.
    Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, Fraser CD, Andropoulos DB, Chang AC (2005) A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth 15(6):495–503CrossRefGoogle Scholar
  103. 103.
    Hassan IA, Wickramasinghe YA, Spencer SA (2003) Effect of limb cooling on peripheral and global oxygen consumption in neonates. Arch Dis Child Fetal Neonatal Ed 88(2):F139–F142, PMCID:1721525CrossRefGoogle Scholar
  104. 104.
    Ancora G, Maranella E, Locatelli C, Pierantoni L, Faldella G (2009) Changes in cerebral hemodynamics and amplitude integrated EEG in an asphyxiated newborn during and after cool cap treatment. Brain Dev 31(6):442–444CrossRefGoogle Scholar
  105. 105.
    Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38(5):539–545CrossRefGoogle Scholar
  106. 106.
    Pennekamp CW, Moll FL, de Borst GJ (2011) The potential benefits and the role of cerebral monitoring in carotid endarterectomy. Curr Opin Anaesthesiol 24(6):693–697CrossRefGoogle Scholar
  107. 107.
    Casati A, Spreafico E, Putzu M, Fanelli G (2006) New technology for noninvasive brain monitoring: continuous cerebral oximetry. Minerva Anestesiol 72(7–8):605–625Google Scholar
  108. 108.
    Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D, Morasso P, Pantano P, Colonnese C, Roma V, Maraviglia B (2003) Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 21(10):1175–1189CrossRefGoogle Scholar
  109. 109.
    Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 100(1):8–15CrossRefGoogle Scholar
  110. 110.
    Ghalenoui H, Saidi H, Azar M, Yahyavi ST, Borghei Razavi H, Khalatbari M (2008) Near-infrared laser spectroscopy as a screening tool for detecting hematoma in patients with head trauma. Prehosp Disaster Med 23(6):558–561Google Scholar
  111. 111.
    Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD (1995) Near-infrared spectroscopy use in patients with head injury. J Neurosurg 83(6):963–970CrossRefGoogle Scholar
  112. 112.
    Hou X, Ding H, Teng Y, Zhou C, Tang X, Li S (2007) Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas 28(10):1251–1265CrossRefGoogle Scholar
  113. 113.
    Moroz T, Banaji M, Robertson NJ, Cooper CE, Tachtsidis I (2012) Computational modelling of the piglet brain to simulate near-infrared spectroscopy and magnetic resonance spectroscopy data collected during oxygen deprivation. J R Soc Interface 9:1499–1509CrossRefGoogle Scholar
  114. 114.
    Franceschini MA, Thaker S, Themelis G, Krishnamoorthy KK, Bortfeld H, Diamond SG, Boas DA, Arvin K, Grant PE (2007) Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr Res 61(5 Pt 1):546–551, PMCID:2637818Google Scholar
  115. 115.
    Grant PE, Roche-Labarbe N, Surova A, Themelis G, Selb J, Warren EK, Krishnamoorthy KS, Boas DA, Franceschini MA (2009) Increased cerebral blood volume and oxygen consumption in neonatal brain injury. J Cereb Blood Flow Metab 29(10):1704–1713, PMCID:2762197CrossRefGoogle Scholar
  116. 116.
    Roche-Labarbe N, Carp SA, Surova A, Patel M, Boas DA, Grant PE, Franceschini MA (2010) Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352, PMCID:2826558CrossRefGoogle Scholar
  117. 117.
    Boas DA, Dale AM, Franceschini MA (2004) Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 23(suppl 1):S275–S288CrossRefGoogle Scholar
  118. 118.
    Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48(10):D280–D298, PMCID:2761652ADSCrossRefGoogle Scholar
  119. 119.
    Aslin RN (2012) Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn Neuropsychol,
  120. 120.
    Minagawa-Kawai Y, Cristia A, Dupoux E (2011) Cerebral lateralization and early speech acquisition: a developmental scenario. Dev Cogn Neurosci 1(3):217–232CrossRefGoogle Scholar
  121. 121.
    Minagawa-Kawai Y, Mori K, Hebden JC, Dupoux E (2008) Optical imaging of infants’ neurocognitive development: recent advances and perspectives. Dev Neurobiol 68(6):712–728CrossRefGoogle Scholar
  122. 122.
    Herrmann MJ, Walter A, Schreppel T, Ehlis AC, Pauli P, Lesch KP, Fallgatter AJ (2007) D4 receptor gene variation modulates activation of prefrontal cortex during working memory. Eur J Neurosci 26(10):2713–2718CrossRefGoogle Scholar
  123. 123.
    Ehlis AC, Bahne CG, Jacob CP, Herrmann MJ, Fallgatter AJ (2008) Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J Psychiatr Res 42(13):1060–1067CrossRefGoogle Scholar
  124. 124.
    Azechi M, Iwase M, Ikezawa K, Takahashi H, Canuet L, Kurimoto R, Nakahachi T, Ishii R, Fukumoto M, Ohi K, Yasuda Y, Kazui H, Hashimoto R, Takeda M (2010) Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: a near-infrared spectroscopy. Schizophr Res 117(1):52–60CrossRefGoogle Scholar
  125. 125.
    Schroeter ML, Zysset S, Kupka T, Kruggel F, Yves von Cramon D (2002) Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design. Hum Brain Mapp 17(1):61–71CrossRefGoogle Scholar
  126. 126.
    Ehlis AC, Herrmann MJ, Wagener A, Fallgatter AJ (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biol Psychol 69(3):315–331CrossRefGoogle Scholar
  127. 127.
    Moghimi S, Kushki A, Power S, Guerguerian AM, Chau T (2012) Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy. J Neural Eng 9(2):026022CrossRefGoogle Scholar
  128. 128.
    Sato Y, Uzuka T, Aoki H, Natsumeda M, Oishi M, Fukuda M, Fujii Y (2012) Near-infrared spectroscopic study and the Wada test for presurgical evaluation of expressive and receptive language functions in glioma patients: with a case report of dissociated language functions. Neurosci Lett 510(2):104–109CrossRefGoogle Scholar
  129. 129.
    Kahlaoui K, Sante GD, Barbeau J, Maheux M, Lesage F, Ska B, Joanette Y (2012) Contribution of NIRS to the study of prefrontal cortex for verbal fluency in aging. Brain Lang 121(2):164–173CrossRefGoogle Scholar
  130. 130.
    Jausovec N, Jausovec K (2012) Working memory training: improving intelligence—changing brain activity. Brain Cogn 79(2):96–106CrossRefGoogle Scholar
  131. 131.
    Okamoto M, Dan H, Shimizu K, Takeo K, Amita T, Oda I, Konishi I, Sakamoto K, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. Neuroimage 21(4):1275–1288CrossRefGoogle Scholar
  132. 132.
    Li ZY, Dai SX, Zhang XY, Li Y, Yu XX (2010) Assessment of cerebral oxygen saturation using near infrared spectroscopy under driver fatigue state. Guang Pu Xue Yu Guang Pu Fen Xi 30(1):58–61Google Scholar
  133. 133.
    Naoi N, Minagawa-Kawai Y, Kobayashi A, Takeuchi K, Nakamura K, Yamamoto J, Kojima S (2012) Cerebral responses to infant-directed speech and the effect of talker familiarity. Neuroimage 59(2):1735–1744CrossRefGoogle Scholar
  134. 134.
    Nomura Y, Ogawa T, Nomura M (2010) Perspective taking associated with social relationships: a NIRS study. Neuroreport 21(17):1100–1105CrossRefGoogle Scholar
  135. 135.
    Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16(5):817–826CrossRefGoogle Scholar
  136. 136.
    Dunn JF, Zaim-Wadghiri Y, Pogue BW, Kida I (1998) BOLD MRI vs. NIR spectrophotometry. Will the best technique come forward? Adv Exp Med Biol 454:103–113CrossRefGoogle Scholar
  137. 137.
    D’Arceuil HE, Hotakainen MP, Liu C, Themelis G, de Crespigny AJ, Franceschini MA (2005) Near-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: a combined approach to studying cerebral maturation in neonatal rabbits. J Biomed Opt 10(1):11011, PMCID:2637814CrossRefGoogle Scholar
  138. 138.
    Sassaroli A, de BFB, Tong Y, Renshaw PF, Fantini S (2006) Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain. Neuroimage 33(2):505–514Google Scholar
  139. 139.
    Toronov VY, Zhang X, Webb AG (2007) A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex. Neuroimage 34:1136–1148CrossRefGoogle Scholar
  140. 140.
    Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA (2006) A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29(2):368–382, PMCID:2692693CrossRefGoogle Scholar
  141. 141.
    Hock C, Villringer K, Muller-Spahn F, Hofmann M, Schuh-Hofer S, Heekeren H, Wenzel R, Dirnagl U, Villringer A (1996) Near infrared spectroscopy in the diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 777:22–29ADSCrossRefGoogle Scholar
  142. 142.
    Rostrup E, Law I, Pott F, Ide K, Knudsen GM (2002) Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans. Brain Res 954(2):183–193CrossRefGoogle Scholar
  143. 143.
    Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G, Lloyd-Fox S, Shukla M, Aslin RN (2011) Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci 1(1):22–46CrossRefGoogle Scholar
  144. 144.
    Karim H, Schmidt B, Dart D, Beluk N, Huppert T (2012) Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture 35:367–372CrossRefGoogle Scholar
  145. 145.
    Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14(5):1186–1192CrossRefGoogle Scholar
  146. 146.
    Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39(2):600–607CrossRefGoogle Scholar
  147. 147.
    Iida M, Haida M, Igarashi M (2009) Vertigo and cerebral hemoglobin changes during unilateral caloric stimulation: a near-infrared spectroscopy study. Ann N Y Acad Sci 1164:386–389CrossRefGoogle Scholar
  148. 148.
    Kobayashi A, Cheung B (2006) Detection of cerebral oxyhaemoglobin changes during vestibular Coriolis cross-coupling stimulation using near infrared spectroscopy. Neurosci Lett 394(2):83–87CrossRefGoogle Scholar
  149. 149.
    Hamaoka T, McCully KK, Niwayama M, Chance B (2011) The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philos Trans A Math Phys Eng Sci 369(1955):4591–4604ADSCrossRefGoogle Scholar
  150. 150.
    Ryoo HC, Sun HH, Shender BS, Hrebien L (2004) Consciousness monitoring using near-infrared spectroscopy (NIRS) during high +Gz exposures. Med Eng Phys 26(9):745–753CrossRefGoogle Scholar
  151. 151.
    Benni PB, Li JK, Chen B, Cammarota J, Amory DW (2003) Correlation of NIRS determined cerebral oxygenation with severity of pilot +Gz acceleration symptoms. Adv Exp Med Biol 530:381–389CrossRefGoogle Scholar
  152. 152.
    Benni PB, Li JK, Chen B, Cammarota J, Amory DW (2003) NIRS monitoring of pilots subjected to +Gz acceleration and G-induced loss of consciousness (G-LOC). Adv Exp Med Biol 530:371–379CrossRefGoogle Scholar
  153. 153.
    Shender BS, Forster EM, Hrebien L, Ryoo HC, Cammarota JP Jr (2003) Acceleration-induced near-loss of consciousness: the “A-LOC” syndrome. Aviat Space Environ Med 74(10):1021–1028Google Scholar
  154. 154.
    Kobayashi A, Tong A, Kikukawa A (2002) Pilot cerebral oxygen status during air-to-air combat maneuvering. Aviat Space Environ Med 73(9):919–924Google Scholar
  155. 155.
    Ryoo HC, Hrebien L, Shender BS (2002) Noninvasive monitoring of human consciousness by near-infrared spectroscopy (NIRS) during high +Gz stress. Biomed Sci Instrum 38:1–7Google Scholar
  156. 156.
    Genik RJ II, Green CC, Graydon FX, Armstrong RE (2005) Cognitive avionics and watching spaceflight crews think: generation-after-next research tools in functional neuroimaging. Aviat Space Environ Med 76(6 suppl):B208–B212Google Scholar
  157. 157.
    Gagnon L, Yucel MA, Dehaes M, Cooper RJ, Perdue KL, Selb J, Huppert TJ, Hoge RD, Boas DA (2012) Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 59:3933–3940CrossRefGoogle Scholar
  158. 158.
    Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A (1997) Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Adv Exp Med Biol 413:149–153Google Scholar
  159. 159.
    Eschweiler GW, Wegerer C, Schlotter W, Spandl C, Stevens A, Bartels M, Buchkremer G (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99(3):161–172CrossRefGoogle Scholar
  160. 160.
    Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17(4):368–381CrossRefGoogle Scholar
  161. 161.
    Sander TH, Liebert A, Burghoff M, Wabnitz H, Macdonald R, Trahms L (2007) Cross-correlation analysis of the correspondence between magnetoencephalographic and near-infrared cortical signals. Methods Inf Med 46(2):164–168Google Scholar
  162. 162.
    Mackert BM, Wubbeler G, Leistner S, Uludag K, Obrig H, Villringer A, Trahms L, Curio G (2004) Neurovascular coupling analyzed non-invasively in the human brain. Neuroreport 15(1):63–66CrossRefGoogle Scholar
  163. 163.
    Lareau E, Lesage F, Pouliot P, Nguyen D, Le Lan J, Sawan M (2011) Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions. J Biomed Opt 16(9):096014CrossRefGoogle Scholar
  164. 164.
    Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, Blankertz B (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59(1):519–529CrossRefGoogle Scholar
  165. 165.
    Machado A, Lina JM, Tremblay J, Lassonde M, Nguyen DK, Lesage F, Grova C (2011) Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions. Neuroimage 56(1):114–125CrossRefGoogle Scholar
  166. 166.
    Lee S, Lee M, Koh D, Kim BM, Choi JH (2010) Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study. J Biomed Opt 15(3):037010CrossRefGoogle Scholar
  167. 167.
    Roche-Labarbe N, Zaaimi B, Mahmoudzadeh M, Osharina V, Wallois A, Nehlig A, Grebe R, Wallois F (2010) NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: the GAERS. Epilepsia 51(8):1374–1384CrossRefGoogle Scholar
  168. 168.
    Ancora G, Maranella E, Grandi S, Sbravati F, Coccolini E, Savini S, Faldella G (2011) Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev (in press)Google Scholar
  169. 169.
    Gucuyener K, Beken S, Ergenekon E, Soysal S, Hirfanoglu I, Turan O, Unal S, Altuntas N, Kazanci E, Kulali F, Koc E, Turkyilmaz C, Onal E, Atalay Y (2012) Use of amplitude-integrated electroencephalography (aEEG) and near infrared spectroscopy findings in neonates with asphyxia during selective head cooling. Brain Dev 34:280–286CrossRefGoogle Scholar
  170. 170.
    ter Horst HJ, Verhagen EA, Keating P, Bos AF (2011) The relationship between electrocerebral activity and cerebral fractional tissue oxygen extraction in preterm infants. Pediatr Res 70(4):384–388Google Scholar
  171. 171.
    Wallois F, Patil A, Heberle C, Grebe R (2010) EEG-NIRS in epilepsy in children and neonates. Neurophysiol Clin 40(5–6):281–292CrossRefGoogle Scholar
  172. 172.
    Aarabi A, Grebe R, Wallois F (2007) A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin Neurophysiol 118(12):2781–2797CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Radiology and BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations