Skip to main content

Energy Planning for Regional and National Needs: A Case Study – The California Forecast (2005–2050)

  • Chapter
  • First Online:
The Next Economics

Abstract

Achievement of a sustainable balance between energy consumption and energy resources has become a critical component for energy planning at the regional, national, and international levels. For regional planners to estimate energy requirements, they must define the population growth, per capita consumption, and applicable energy conservation. They must also determine the technical capacity for energy supply from the respective energy resources. An energy consumption projection and energy resource plan has been developed for the State of California covering the period of 2005–2050.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtelik G (2011) “California hydrogen highway network,” CaH2 Net, California Air Resources Board, 8 Feb, p 2. http://www.hydrogenhighway.ca.gov/facts/progress.pdf. Accessed 4 Mar 2011

  • Al-Juaied M, Whitmore A (2009) Realistic costs of carbon capture. Discussion paper, Belfer Center for Science and International Affairs, Cambridge, MA

    Google Scholar 

  • Baker DR (2010) Solar industry goes through shakeout. San Francisco Chronicle, 17 Apr 2010, p D-1. http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2010/04/16/BUB91CUQPQ.DTL. Accessed 8 Feb 2012

  • Baldassare M, Han E (2005) CA 2025, “Its your choice: what kind of California do you want?” Section: the challenge, Public Policy Institute of California, p 7

    Google Scholar 

  • Beberich S (2012) Reliable power for a renewable future – 2012–2016 strategic plan. California ISO, 250 Outcropping Way, Folsom 95630, p 6. www.caiso.com/documents/2012-2016strategicplan.pdf. Accessed 7 Feb 2012

  • Boer R (2009) Optimized core design and fuel management of a pebble –bed type nuclear reactor. Ios Press, Amsterdam. ISBN 13:9781586039660

    Google Scholar 

  • Borenstein S (2011) The private and public economies of renewable electricity generation. Energy Institute at Hass, 2547 Channing Way, #5180, Berkeley, WP 221, pp 2, 24. http://ei.haas.berkeley.edu. Accessed 7 Feb 2012

  • Brundtland GH (1987a) Our common future, world commission on environment and development. Oxford University Press, Oxford/New York, p xi. ISBN 0-19-282080

    Google Scholar 

  • Brundtland GH (1987b) Our common future, world commission on environment and development. Oxford University Press, Oxford/New York, p 8. ISBN 0-19-282080

    Google Scholar 

  • BTAC (Biomass Technical Advisory Committee) (2002) Vision for bioenergy & bio-based products in the United States, p 9. http://www1.eere.energy.gov/biomass/pdfs/final_2006_vision. Accessed 8 Feb 2012

  • Byron JD (2009) 2009 Integrated energy policy report. California Energy Commission, CEC-100-2009-003-CTD, p 133

    Google Scholar 

  • CA Assembly Bill 32 (2006) http://www.arb.ca.gov/cc/ab32/ab32.htm. Accessed 8 Feb 2012

  • CA Department of Finance (2011) http://www.dof.ca.gov/research/demographic/reports/estimates/e-6/view.php. Accessed 8 Feb 2012

  • CEC Oil Supply Sources to Ca Refineries (2005) http://www.energy.ca.gov/2006publications/CEC-600-2006-006/CEC-600-2006-006.PDF. Accessed 8 Feb 2012

  • Carpenter S (2010) A gas station at home? It’s Honda’s vision of the future. Los Angeles Times, 25 June 2010. http://latimesblogs.latimes.com/home_blog/2010/06/honda-clarity-hydrogen-fuel-cell-home-refueler.html. Accessed 8 Feb 2012

  • Chaudhari M et al (2004) PV grid connected market potential under a cost breakthrough scenario. Navigant consulting under contract to the Energy Foundation, EF, p 117373

    Google Scholar 

  • Clark WW II (2009) Sustainable communities. Springer, New York. ISBN 978-1-4419-0218-4

    Book  Google Scholar 

  • Clark WW II (2010) Sustainable communities design handbook. Elsevier, New York

    Google Scholar 

  • Clark WW II (2006a) A green hydrogen economy, Special issue on hydrogen. Energy Policy, Elsevier, vol 34, Fall, pp 2630–2639

    Google Scholar 

  • Clark WW II (2006b) Partnerships in creating agile sustainable development communities. J Clean Prod, Elsevier Press

    Google Scholar 

  • Clark WW II, Morris G (2002) Policy making and implementation process: the case of intermittent resources. J Int Energy Policy, Interscience. http://www.clarkstrategicpartners.net/documents/Journals/WindPolicyWWCGreg352-204.pdf. Accessed 8 Feb 2012

  • Clark C, Yin Y (2007) The sustainability of biomass energy in the Pacific Northwest: a framework for the PNW region of the Sun Gran Initiative. Biomass Feed Stock Partnership workshop, 27–29 Aug 2007, Oregon State University, Sun Grant, Portland

    Google Scholar 

  • Department of Commerce (2004) Income, poverty, and health insurance coverage in the United States: 2004. Issued Aug 2005. http://www.census.gov/prod/2005pubs/p60-229.pdf. Accessed 28 Feb 2012

  • Desvaux M (2007) The sustainability of human populations: how many people can live on Earth? RSS Journal Significance 4(3):4–6

    Google Scholar 

  • Dutzik T et al (2006) A new energy future: the benefits of energy and renewable energy for cutting America’s use of fossil fuels. Environment California Research & Policy Center, Los Angeles, pp 15–18, Fall

    Google Scholar 

  • Fisher J (2011) A green future for the Los Angeles department of water and power.Synapse Energy Economics. 22 Pearl Street, Cambridge, MA, 02139, p 2. http://www.labeyondcoal.org/uploads/7/5/9/0/7590173/synapse_consulting_-_green_plan_for_ladwp_-_may_2011_-_final.pdf. Accessed 8 Feb 2012

  • Forest Stewardship Council (2008) Full review of FSC principles and criteria. FSC newsletter, News and Views 6(9):1–2, 5 Sept 2008. http://fscus.org/news/. Accessed 8 Feb 2012

  • CEC Gross System Power (2004) http://www.energy.ca.gov/2005publications/CEC-300-2005-004/CEC-300-2005-004.PDF. Accessed 8 Feb 2012

  • Hass R et al (2008) Towards sustainability of energy systems: a primer on how to apply the concept of energy services to identify necessary trends and policies. Energy Policy 36(11):4020

    Google Scholar 

  • Hatcher M (2012) PW 2012: fusion laser on track for 2012 burn. Optics.org. 29 Jan 2012. http://optics.org/news/3/1/37. Accessed 7 Feb 2012

  • Hicks B, Nelder C (2007) Profit from peak oil. Wiley, Hoboken, 111 River Street 07030

    Google Scholar 

  • Highway Statistics (2004) State highway agency-owned public roads 2000 to 2004. Rural and Urban Miles; Estimated Lane-Miles and Daily Travel. http://www.fhwa.dot.gov/policy/ohim/hs04/htm/hm80.htm. Accessed 8 Feb 2012

  • Jacobson MZ, Delucchi MA (2010) Providing all global energy with wind, water, and solar power, Part 1: technologies energy resources, quantities and areas of infrastructure and materials. Energy Pol. doi:10.1016/j.enpol.2010.11.040

  • Jenkins BM (2006a) A preliminary roadmap for the development of biomass in California. PIER collaborative report, California Energy Commission, CEC-500-2006-095-D, Figure 1.5, p 27

    Google Scholar 

  • Jenkins BM (2006b) A roadmap for the development of biomass in California. Informational meeting, California Energy Commission, 19 Sept 2006

    Google Scholar 

  • Keese WJ (2003) Renewable portfolio standard: decision on phase 1 implementation issues. California Energy Commission 500-03-023F, p 4

    Google Scholar 

  • Kessides IN (2010) Nuclear power: understanding the economic risks and uncertainties. Energy Pol 38:3849–3864

    Article  Google Scholar 

  • Knittel CR (2012) Reducing petroleum consumption from transportation. Energy Institute at HAAS, WP 227, pp 15–20. http://ei.haas.berkeley.edu. Accessed 7 Feb 2012

  • Lipman T (2004) What will power the hydrogen economy? Present and future sources of hydrogen energy. Report prepared for The National Resources Defense Council, Institute of Transportation Studies – University of California, Davis, 95616, Figure E-4, p x

    Google Scholar 

  • Long JCS, John M (2011) California’s energy future: the view to 2050. California Council on Science and Technology, 1130 K Street, Suite 280, Sacramento, 95814, ISBN-13 978-1-930117-44-0, pp 31, 42. http://ccst.us/publications/index.php. Accessed 7 Feb 2012

  • Marks M (2005) Natural gas assessment update. CEC report 600-2005-003, p 131, CEC California historical natural gas supply by source, CEC, 2005. http://www.energy.ca.gov/2005publications/CEC-600-2005-003/CEC-600-2005-003.PDF. Accessed 8 Feb 2012

  • McCarthy E (2005) Experts say nukes create greenhouse impacts. California Energy Circuit, Berkeley, CA, USA

    Google Scholar 

  • McGhee L (2006) McMansions yanked from village menu. Sacramento Bee, 19 Oct 2006, B-1

    Google Scholar 

  • Moniz EJ et al (2010a) “The future of natural gas,” an interdisciplinary MIT study interim report. MIT Energy Initiative, Boston, p xi. ISBN 978-0-9828008-0-5

    Google Scholar 

  • Moniz EJ et al (2010b) “The future of natural gas,” an interdisciplinary MIT study interim report. MIT Energy Initiative, Boston, p 14. ISBN 978-0-9828008-0-5

    Google Scholar 

  • Moniz EJ et al (2010c) “The future of natural gas” an interdisciplinary MIT study interim report. MIT Energy Initiative, Boston, p xiii. ISBN 978-0-9828008-0-5

    Google Scholar 

  • MPR (2005) California Public Utility Commission, Mar 2006. http://docs.cpuc.ca.gov/published/Comment_resolution/54445. Accessed 8 Feb 2012

  • Murtishaw S et al (2005) Development of energy balances for the State of California, prepared by Lawrence Berkeley Laboratory, Environmental Energy Technologies Division, Berkeley, Tel: (510) 486–7553, CEC PIER report 500-2005-068, June, Table 2, p 11

    Google Scholar 

  • Myers DB et al (2003) Hydrogen from renewable energy sources: pathway to 10 quads for transportation uses in 2030 to 2050. Draft report by Directed Technologies, for the Hydrogen Program Office, Office of Power Technologies, U.S. Department of Energy, Washington, DC, Figure 2, p 2

    Google Scholar 

  • Nyberg MJ (2009) 2009 net system power report. California Energy Commission, 200–2009 010-CMF, Table 2, p 5

    Google Scholar 

  • Optimum Population Trust (2002) www:optimumpopulation.org/opt.contact.html

    Google Scholar 

  • Overbye TJ (2006) Building tomorrow’s super grid. EnergyBiz Magazine, p 76, Sept/Oct

    Google Scholar 

  • Perez P (2005) Platts Ethanol finance and investment. Chicago Conference, Chicago

    Google Scholar 

  • Prodi R (2003) EU roadmap towards a European partnership for a sustainable hydrogen economy. Speech, Brussels, 10 Sept 2003

    Google Scholar 

  • Pyle W (1998) Solar hydrogen chronicles. Wheelock Mountain Publications, ISDN 0-9663703-0-9. http://www.goodideacreative.com/shc.html. Accessed 8 Feb 2012

  • Rosenberg M (2007) The ultimate answer: fusion power’s long take off. Energy Biz Magazine May/June, pp 36–40

    Google Scholar 

  • Roundtable (2008) Roundtable on sustainable biofuels, Version, Zero, standard for sustainable biofuels, 13 Aug 2008, p 2. http://www.biofuels.nsw.gov.au/__data/assets/pdf_file/0003/105429/RSB_Principles_and_Criteria_v0.pdf. Accessed 8 Feb 2012

  • Schaffer MB (2011) Toward a viable nuclear waste disposal program. Energy Pol. doi:10.1016/j.enpol.2010.12.010

  • Schwarzenegger (2004) Executive order 2-7-04 by the Governor of the State of California. http://www.renewableenergyworld.com/rea/news/article/2009/09/executive-order-raises-california-rps-to-33-by-2020. Accessed 8 Feb 2012

  • Schwarzenegger (2005) Governor Arnold Schwarzenegger’s California hydrogen highways network action plan. http://gov.ca.gov/executive-order/11072/. Accessed 8 Feb 2012

  • CA Senate Bill 1078 (2002) http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1051-1100/sb_1078_bill_20020912_chaptered.html. Accessed 8 Feb 2012

  • Simmons G (2005a) Developing cost-effective solar resources with electricity system benefits. IEPR Committee Workshop, Pier Renewables, California Energy Commission, CSP: Economic Potential with WTLR

    Google Scholar 

  • Simmons G (2005b) Developing cost-effective solar resources with electricity system benefits. IEPR Committee Workshop, Pier Renewables, California Energy Commission, Trough: Cost Model Inputs & Results, Tower: LCOE Values

    Google Scholar 

  • Sison-Librilla E (2005) Geothermal strategic value analysis, CEC 500-2005-105-SD, June draft, p 1, Table 6, p 12

    Google Scholar 

  • Sorrel S et al (2010) Global oil depletion: a review of evidence. Energy Pol 38:5290–5295

    Article  Google Scholar 

  • Stoddard L et al (2006a) Economic, energy, and environmental benefits of concentrating solar power in California. Black and Veatch, NREL Sub Contract Report SR-550-39291, Table 6–2, pp 6–4

    Google Scholar 

  • Stoddard L et al (2006b) Economic, energy, and environmental benefits of concentrating solar power in California. Black and Veatch, NREL Sub contract report SR-550-39291, Table 3–1, pp 3–1

    Google Scholar 

  • Stoddard L et al (2006c) Economic, energy, and environmental benefits of concentrating solar power in California. Black and Veatch, NREL Sub contract report SR-550-39291, pp 8–1

    Google Scholar 

  • Stoddard L et al (2006d) Economic, energy, and environmental benefits of concentrating solar power in California. Black and Veatch, NREL Sub contract report SR-550-39291, pp 5–5, Table 5–1, pp 4–3, Table 4–1, pp 3–1, Table 3–1

    Google Scholar 

  • USA Bureau of Economic Analysis (2007) Pre, capita real GDP by state 2007. http://www.bea.gov/newsreleases/regional/gdp_state/2008/gsp0608.htm. Accessed 8 Feb 2012

  • US Census Bureau (2005) Gross Domestic Product by state-sorted by 2000–2005 GDP per capita growth. http://www.economics-chart.com/gdp/GDP-Per-Capita-by-gpc-growth.html. Accessed June 2010

  • USDOE, IEO (2006a) International energy outlook, Report# DOE/EIA-0484(2006), Release Date: June 2006, web site: http://www.eia.gov/forecasts/archive/ieo06/index.html. Accessed 8 Feb 2012

  • USDOE, EIA (2006b) Annual energy outlook 2006 with projections to 2030. http://www.eia.doe.gov/neic/press/press267.html. Accessed 8 Feb 2012

  • van Vliet O et al (2011) Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage. Energy Pol 39:258, Table 8

    Google Scholar 

  • Von Weizsacker EU (1998) Factor four: doubling wealth, halving resource use. Earthscan, London. ISBN 9781853834066

    Google Scholar 

  • Wing IS (2005) The synthesis of bottom-up and top-down approaches to climate policy modeling: electric power technologies and the cost of limiting US CO2 emissions. Energy Policy 34:3847

    Article  Google Scholar 

  • Woody T (2011) Solar energy faces test on greenness. The New York Times, Business Day Energy and Environment, New York Edition, 24 Feb 2011, p B-1

    Google Scholar 

  • Yen D (2005) Strategic value analysis: economics of wind energy in California. CEC 500-2005-107-SD, June Draft p 1, and Table 4 (with build out to Technical Feasibility levels by 2050)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary C. Matteson M.S., M.B.A. .

Editor information

Editors and Affiliations

Appendices

Appendix 1

California’s energy consumption and energy resource projections 2005–2050 in quads/yeara. For source of data, see text under respective resource heading

Type

2005

2010

2020

2030

2040

2050

State natural gas heat

0.2794

0.2794

0.2794

0.2794

0.2794

0.2794

Imports, US, NG heat

1.7347

1.4585

2.2393

2.4236

2.1447

1.9907

State gas/dieselb

1.3463

1.3463

1.3500

1.3500

1.3500

1.1000

Imports, US, gas/dieselb

0.7592

0.8200

0.8200

0.8200

0.6000

0.2000

Imports, foreign, gas/dieselb

1.5119

1.7500

1.7000

0.6000

0.0000

0.0000

State hydro. elect.

0.0991

0.0991

0.0991

0.0991

0.0991

0.0991

Imports, US, hydro. elect.

0.0454

0.0454

0.0454

0.0454

0.0454

0.0454

State coal elect.

0.0976

0.0976

0.0976

0.0976

0.0976

0.0976

Imports, US, coal elect.

0.1129

0.1129

0.1129

0.1129

0.1129

0.1129

State natural gas elect.

0.3584

0.3584

0.3584

0.3584

0.3584

0.3584

Imports, US, NG elect.

0.0450

0.0450

0.0450

0.0450

0.0450

0.0450

State nuclear elect.

0.1031

0.1031

0.1031

0.1031

0.1031

0.1031

Imports, US, nuclear elect.

0.0230

0.0230

0.0230

0.0230

0.0230

0.0230

Biomass elec.

0.0200

0.0250

0.0500

0.0500

0.0500

0.0500

Biomass – CH4/Ethan./BioD

0.0500

0.0750

0.3300

0.3400

0.3000

0.2400

Imports, US, ethanol bioD

0.0678

0.0800

0.1000

0.1818

0.3636

0.3636

State biomass to H2

0.0000

0.0000

0.0000

0.0350

0.0900

0.1600

Import biomass to H2

0.0000

0.0000

0.0000

0.0140

0.0280

0.0280

Solar elect.

0.0024

0.4292

0.1549

0.2948

0.9408

1.4048

Solar elect. to H2

0.0000

0.0000

0.3500

1.7500

2.7300

3.8500

Wind elect.

0.0145

0.0356

0.0220

0.1664

0.3017

0.4097

Wind elect. to H2

0.0000

0.0000

0.0350

0.1750

0.3220

0.4900

Small hydro elect.

0.0159

0.0172

0.0197

0.0223

0.0248

0.0272

Geothermal elect.

0.0478

0.0735

0.0247

0.0520

0.0520

0.0520

Geothermal elect. to H2

0.0000

0.0000

0.0077

0.0560

0.0560

0.0560

Prospective

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Total

6.7344

7.2742

8.3672

9.4948

10.5175

11.5859

Baseline consumption (applies population increase numbers to 2010–2050)

6.7344

7.2732

8.3641

9.4515

10.4911

11.5402

Total electrical supply in quads/year

0.9851

1.4650

1.5485

3.4510

5.3618

7.2242

Total gas supply in quads/year (less amount going to electricity gen.)

2.0141

1.7379

2.5187

2.7030

2.4241

2.2701

Target supply (in quads/year) transportation fuels based on population growth

3.7352

4.0340

4.6391

5.2422

5.8188

6.4007

Total supply transport fuels in quads/year

3.7352

4.0713

4.6927

5.3218

5.8396

6.4876

Total renewable energy

0.2184

0.7355

1.0940

3.1373

5.2589

7.1313

Percent of renewable energy in total energy consumption

3.24%

10.11%

13.08%

33.04%

50.00%

61.55%

  1. aOne quad  =  1015 BTUs  =  1018 J
  2. b“State,” “federal,” and “foreign” indicate source of crude oil. All refining is conducted in California

Appendix 2

Projections for concentrated solar power

  

Total land mass in Californiaa

155,959 sq. miles

  

Parabolic trough, 6 h storage with slope less than 1%b

5,900 sq. miles

471,000 MW

1,640,000 GWh (5.599 quads BTUs)

Concentrating PV, < 5% slopeb

14,400 sq. miles

1,534,000 MW

3,558,000 GWh (12.147 quads Btus)

 

2005

2010

2020

2030

2040

2050

Solar Ca parabolic troughs, 6 h storage, <1 slope landc (quads)

0

0.746

5.599

5.599

5.599

5.599

Concentrating PV, <5% slope landc (quads)

0

0

12.147

12.147

12.147

12.147

CA electrical energy loadd (quads)

0.9851

1.465

1.5485

3.451

5.3618

7.2242

CA all energy loadd (quads)

6.7344

7.2742

8.33651

9.4925

10.4912

11.5408

  1. a www.dof.ca.gov/html/fs_data/stat-abs/table/as.xls
  2. bStoddard 2006b
  3. cStoddard 2006c
  4. dAppendix 1

Appendix 3

Projections for solar PV grid connected per navigant paper September 2004

Solar panels

2010

   
 

MWa

Capacity factorb

Annual GWh

BTUs in quads

Residentiald

20,132

   
 

2,237

   
 

22,369

   

Total res.

44,738

0.179

70,151

0.240

Commerciald

16,915

   
 

1,879

   
 

18,794

   

Total com.

37,588

0.164

54,000

0.184

   

Total Quads

0.424

Solar panels

2025

   
 

MW c

Capacity factor b

Annual GWh

BTUs in quads

Residentiald

28,794

   
 

3,199

   
 

31,993

   

Total res.

63,986

0.179

100,333

0.343

Commerciald

27,899

   
 

3,100

   
 

30,999

   

Total com.

61,998

0.164

89,069

0.304

   

Total quads

0.647

  1. Sources: Chaudhari et al. 2004
  2. aPage 83 Technical market for PV (MWp) in 2010 – by state and segment
  3. bPersonal communication with author
  4. cPage 82 Technical market for PV (MWp) in 2025 – by state and segment
  5. dState of California data was in three segments, SCE, SDGE, PG&E (note: no Muni data)

Appendix 4

Biomass to electricity capital cost in $2006 dollars – model deployment

 

Year

Cost per trillion BTUs ($)

 

Technical capacity trillion BTUs per year

Cost ($)

 

Quads

2010

44,444,444

 

20

888,888,880

 

0.0200

2020

44,444,444

 

30

1,333,333,320

 

0.0300

2030

44,444,444

 

0

0

 

0.0000

2040

44,444,444

 

0

0

 

0.0000

2050

44,444,444

 

0

0

 

0.0000

Sum

44,444,444

 

50

2,222,222,200

 

0.0500

Source: Jenkins 2006b

Biomass to CH 4 /ethanol/BioD/heating capital cost in $2006 dollars – model deployment

Year

Cost per trillion BTUs ($)

 

Technical capacity trillion BTUs per year

Cost ($)

 

Quads

2010

44,444,444

 

80

3,555,555,520

 

0.0800

2020

44,444,444

 

275

12,222,222,100

 

0.2750

2030

44,444,444

 

15

666,666,660

 

0.0150

2040

44,444,444

 

15

666,666,660

 

0.0150

2050

44,444,444

 

15

666,666,660

 

0.0150

Sum

44,444,444

 

400

17,777,777,600

 

0.4000

Source: Jenkins 2006b

Concentrated solar plant capital cost in $2005 dollars – model deployment scenario

 

Year

Cost/100 MWe ($)

Cost per watt ($)

Technical capacity MWe

Cost ($)

MGWh/year

Quads

2007

494,386,000

4.94

100

494,386,000

348

0.0012

2009

457,590,000

4.58

100

457,590,000

348

0.0012

2011

583,384,000

3.89

250

972,306,667

870

0.0030

2015

631,373,000

3.16

950

2,999,021,750

3,307

0.0113

2020

631,373,000

3.16

2,600

8,207,849,000

9,051

0.0309

2030

631,373,000

3.16

155,666

491,416,547,090

541,873

1.8500

2040

631,373,000

3.16

155,666

491,416,547,090

541,873

1.8500

2050

631,373,000

3.16

155,668

491,422,860,820

541,880

1.8500

Sum

  

471,000

1,487,387,108,417

1,639,551

5.5975

Source: Stoddard et al. 2006d

Solar PV capital cost in $2005 dollars – model deployment scenario

 

Year

 

Cost per watt ($)

Technical capacity MWe

Cost ($)

MGWh/year

Quads

2010

 

2.25

82,326

185,233,500,000

124,148

0.4238

2025

 

2.25

43,640

98,190,000,000

65,809

0.2247

2050

 

2.25

34,015

76,533,750,000

51,295

0.1751

Sum

  

159,981

359,957,250,000

241,251

0.8236

Source: Chaudhari et al. 2004

Wind capital cost in $2005 dollars – model deployment scenario

 

Year

 

Cost per watt ($)

Technical capacity MWe

Cost ($)

MGWh/year

Quads

2010

 

0.76

2,000

1,520,000,000

6,170

0.0211

2017

 

0.63

3,029

1,908,270,000

9,344

0.0319

2030

 

0.63

30,990

19,523,700,000

95,604

0.3264

2040

 

0.63

30,990

19,523,700,000

95,604

0.3264

2050

 

0.63

30,991

19,524,330,000

95,607

0.3264

Sum

  

98,000

62,000,000,000

302,330

1.0322

Source: Yen 2005

Geothermal capital cost in $2005 dollars – model deployment scenario

 

Year

 

Cost per watt ($)

Technical capacity MWe

Cost ($)

MGWh/year

Quads

2010

 

4

1000

3,620,000,000

7,538

0.0257

2017

 

4

1,995

7,002,450,000

15,038

0.0513

Sum

  

2,995

10,622,450,000

22,576

0.0771

Source: Sison-Librilla 2005

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matteson, G.C. (2013). Energy Planning for Regional and National Needs: A Case Study – The California Forecast (2005–2050). In: Clark II, W. (eds) The Next Economics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4972-0_5

Download citation

Publish with us

Policies and ethics