Skip to main content

Nonaromatic Organic Acids of Honeys

  • Chapter
  • First Online:
Pot-Honey

Abstract

Pot honeys have delicate, sweet and sour flavors, and are highly appreciated in tropical areas. Their acidity is usually high, and therefore, free acid values could contribute to characterize stingless bee honeys. Organic acids contribute to several honey properties and have been considered potentially useful to determine the origin of honeys. Among other components, organic acids have been studied as possible contributors to honeys’ antioxidant and antibacterial activities. Some honey nonaromatic organic acids have been used as treatments against varroasis and small hive beetles. High acetic acid contents could indicate honey fermentation. The most important procedures to determine honey nonaromatic organic acids are enzymatic assays, chromatographic techniques, and capillary electrophoresis procedures. At the end of this chapter the advantages and disadvantages of each of them are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamanni MC, Cossu M, Sanna F. 2000. Un metodo HPLC per il dosaggio degli acidi ossalico, lattico e formico quali acaricidi e componenti naturali nel miele. La Rivista di Scienza dell’Alimentazione 29:139–147.

    CAS  Google Scholar 

  • Anklam E. 1998. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry 63:549–562.

    Article  CAS  Google Scholar 

  • Boden J, Haumann I, Mainka A. 2000. Anwendung der Kapillarelektrophorese in der Lebensmittelanalytik. GIT Labor-Fachzeitschrift 44:924–927.

    CAS  Google Scholar 

  • Bogdanov S. 1997. Nature and origin of the antibacterial substances in honey. Lebensmittel-Wissenschaft und Technologie 30:748–753.

    Article  CAS  Google Scholar 

  • Bogdanov S. 2009. Honey composition. Bee Product Science. Available at: http://www.bee-hexagon.net/en/honey.htm. Accessed 5 May 2011.

  • Bogdanov S. 2011. Honey as nutrient and functional food: a review. Bee Product Science. Available at: http://www.beehexagon.net/en/honey.htm. Accessed 15 January 2012.

  • Bogdanov S, Charrière JD, Imdorf A, Kilchenmann V, Fluri P. 2002. Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie 33:399–409.

    Google Scholar 

  • Boorn KL, Khor Y-Y, Sweetman E, Tan F, Heard TA, Hammer KA. 2010. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. Journal of Applied Microbiology 108:1534–1543.

    Article  CAS  PubMed  Google Scholar 

  • Camargo JMF, Menezes Pedro SR. 1992. Systematics, phylogeny and biogeography of the Meliponinae (Hymenoptera, Apidae): a mini-review. Apidologie 23:509–522.

    Article  Google Scholar 

  • Camargo JMF, Menezes Pedro SR. 2007. Meliponini Lepeletier, 1836. pp. 273–578. In Moure JMS, Urban D, Melo GAR, eds. Catalogue of bees (Hymenoptera, Apoidea) in the neotropical region. Sociedade Brasileira de Entomologia; Curitiba, Brasil; 1958 pp.

    Google Scholar 

  • Casella IG, Gatta M. 2001. Determination of electroactive organic acids by anion-exchange chromatography using a copper modified electrode. Journal of Chromatography A 912:223–233.

    Article  CAS  PubMed  Google Scholar 

  • Cherchi A, Spanedda L, Tuberoso C, Cabras P. 1994. Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. Journal of Chromatography A 669:59–64.

    Article  CAS  Google Scholar 

  • Cherchi A, Porcu M, Spanedda L, Tuberoso CIG, Cosentino S, Palmas F. 1995. Individuazione di parametri utili per la caratterizzazione e la valorizzazione di mieli tipici della Sardegna: asfódelo, cardo e corbezzolo. La Rivista di Scienza dell’Alimentazione 24:523–534.

    CAS  Google Scholar 

  • CODEX. 2001. Revised codex standard for honey. CODEX STAN 12–1981, Codex Alimentarius Commission, FAO/OMS. Rome, Italy. pp. 1–8.

    Google Scholar 

  • Cossu M, Alamanni MC. 1999. Possibilità di impiego di una metodica enzimatica per la determinazione dell’acido ossalico in campioni di miele della Sardegna. La Rivista di Scienza dell’Alimentazione 28:315–319.

    CAS  Google Scholar 

  • Crane E. 1990. The traditional hive products: honey and beeswax. 388–451 pp. In Crane E, ed. Bees and beekeeping. Science, practice and world resources. Heinemann Newnes; Oxford, UK.

    Google Scholar 

  • Dardon MJ, Enríquez E. 2008. Caracterización físicoquímica y antimicrobiana de la miel de nueve especies de abejas sin aguijón (Meliponini) de Guatemala. Interciencia 33:916–922.

    Google Scholar 

  • De Almeida AD, Souza B, Marchini LC, Moreti AC. 2009. Composition of honey samples originated from Jataí bees (Tetragonisca angustula latreille, 1811). Ciência e Tecnologia de Alimentos 29:535–541.

    Article  Google Scholar 

  • Defilippi A, Piancone G, Prandtatter A, Tibaldi G. 1995. Honey quality: ion chromatographic determination of formic acid. Industrie Alimentari 34:495–497, 503.

    Google Scholar 

  • Del Nozal MJ, Bernal JL, Marinero P, Diego JC, Ferchilla JI, Higes M, Llorente J. 1998. High performance liquid chromatographic determination of organic acids in honey from different botanical origin. Journal of Liquid Chromatography and related Technologies 21:3197–3214.

    Article  Google Scholar 

  • Del Nozal MJ, Bernal JL, Diego JC, Gómez LA, Ruiz JM, Higes M. 2000. Determination of oxalate, sulfate and nitrate in honey and honeydew by ion-chromatography. Journal of Chromatography A 881:629–638.

    Article  PubMed  Google Scholar 

  • Del Nozal MJ, Bernal JL, Diego JC, Gómez LA, Higes M. 2003a. HPLC determination of low molecular weight organic acids in honey with series-coupled ion-exclusion columns. Journal of Liquid Chromatography and Related Technologies 26:1231–1253.

    Article  CAS  Google Scholar 

  • Del Nozal MJ, Bernal JL, Gómez LA, Higes M, Meana A. 2003b. Determination of oxalic acid and other organic acids in honey and in some anatomic structures of bees. Apidologie 34:181–188.

    Article  CAS  Google Scholar 

  • DeMera JH, Angert ER. 2004. Comparison of the antimicrobial activity of honey produced by Tetragonisca angustula (Meliponinae) and Apis mellifera from different phytogeographic regions of Costa Rica. Apidologie 35:411–417.

    Article  Google Scholar 

  • Echigo T, Takenaka T. 1974. Production of organic acids in honey by honeybees. Nippon Nogei Kagaku Kaishi 48:225–230.

    Article  CAS  Google Scholar 

  • FAO-Food and Agriculture Organization. 1990. Control de calidad de la miel y la cera. Agricultural Services Bulletin 68/3. Rome, Italy. Available at: www.fao.org

  • Ferreres F, Andrade P, Tomás-Barberán FA. 1996. Natural occurrence of abscisic acid in heather honey and floral nectar. Journal of Agricultural and Food Chemistry 44:2053–2056.

    Article  CAS  Google Scholar 

  • Gheldof N, Wang XH, Engeseth NJ. 2002. Identification and quantification of antioxidant components of honeys from various floral sources. Journal of Agricultural and Food Chemistry 50:5870–5877.

    Article  CAS  PubMed  Google Scholar 

  • Gonnet M. 1982. Le miel. Composition, propriétés et conservation. 2nd edition. Opida, INRA Station Expérimetale d’Apiculture. Montfavet, France. 30 pp.

    Google Scholar 

  • Hansen H, Guldborg M. 1998. Residues in honey and wax after treatment of bee colonies with formic acid. Tidsskrift for Planteavl 92:7–10.

    Google Scholar 

  • Heard TA. 1999. The role of stingless bees in crop pollination. Annual Review of Entomology 44:183–206.

    Article  CAS  PubMed  Google Scholar 

  • Hilger A. 1904. Zur Kenntnis der im rechtsdrehend Koniferhonig vorkommenden Dextrine. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel, sowie der Gebrauchsgegenstände 8:110–126.

    Article  Google Scholar 

  • Horváth K, Molnár-Perl I. 1998. Simultaneous GC-MS quantitation of ο-phosphoric, aliphatic and aromatic carboxylic acids, proline, hydroxyethylfurfural and sugars as their TMS derivatives in honeys. Chromatographia 48:120–126.

    Article  Google Scholar 

  • Hrobonová K, Lehotay J, Cizmárik J. 2007. Determination of quinic and shikimic acids in products derived from bees and their preparates by HPLC. Journal of Liquid Chromatography and Related Technologies 30:2635–2644.

    Article  Google Scholar 

  • Irish J, Heard TA, Carter DA, Blair SE. 2008. Antibacterial activity of honey from the Australian stingless bee Trigona carbonaria. International Journal of Antimicrobial Agents 32:89–90.

    Article  CAS  PubMed  Google Scholar 

  • Isidorov VA, Czyzewska U, Jankowska E, Bakier S. 2011. Determination of royal jelly acids in honey. Food Chemistry 124:387–391.

    Article  CAS  Google Scholar 

  • Jurado-Sánchez B, Ballesteros E, Gallego M. 2011. Gas chromatographic determination of 29 organic acids in foodstuffs after continuous solid-phase extraction. Talanta 84:924–930.

    Article  PubMed  Google Scholar 

  • Kaskoniene V, Venskutonis PR. 2010. Floral markers in honey of various botanical and geographic origins: a review. Comprehensive Reviews in Food Science and Food Safety 9:620–634.

    Article  CAS  Google Scholar 

  • Kent RB. 1984. Mesoamerican stingless beekeeping. Journal of Cultural Geography 4:14–28.

    Article  Google Scholar 

  • Kerr WE. 1987. Abelhas indígenas brasileiras (meliponíneos) na polinizaçao e na produçao de mel, pólen, geoprópolis e cera. Informe Agropecuario 13:15–22.

    Google Scholar 

  • Kirnpaul-Kaur BS, Tse Tan H, Boukraa L, Hua Gan S. 2011. Different solid phase extraction fractions of Tualang (Koompassia excelsa) honey demonstrated diverse antibacterial properties against would and enteric bacteria. Journal of ApiProduct and ApiMedical Science 3:59–65.

    Article  Google Scholar 

  • Louveaux J. 1985. Le miel. Cahiers de Nutrition et de Diététique 20:57–70.

    CAS  Google Scholar 

  • Mato I. 2004. Estudio de los ácidos orgánicos no aromáticos en la miel. PhD thesis. Faculty of Farmacy, University of Santiago de Compostela. Spain. pp. 3–342.

    Google Scholar 

  • Mato I, Huidobro JF, Sánchez MP, Muniategui S, Fernández-Muiño MA, Sancho MT. 1997. Enzymatic determination of total d-gluconic acid in honey. Journal of Agricultural and Food Chemistry 45:3550–3553.

    Article  CAS  Google Scholar 

  • Mato I, Huidobro JF, Sánchez MP, Muniategui S, Fernández-Muiño MA, Sancho MT. 1998a. Enzymatic determination of l-malic acid in honey. Food Chemistry 62:503–508.

    Article  CAS  Google Scholar 

  • Mato I, Huidobro JF, Cendón V, Muniategui S, Fernández-Muiño MA, Sancho MT. 1998b. Enzymatic determination of citric acid in honey by using polyvinylpolypyrrolidone clarification. Journal of Agricultural and Food Chemistry 46:141–144.

    Article  CAS  PubMed  Google Scholar 

  • Mato I, Huidobro JF, Sánchez MP, Simal-Lozano J, Sancho MT. 2000. Calculation of different citric acid forms in honey and their relationships with the honey pH. Deutsche Lebensmittel-Rundschau 96:177–180.

    CAS  Google Scholar 

  • Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2003. Significance of nonaromatic organic acids in honey. Journal of Food Protection 66:2371–2376.

    CAS  PubMed  Google Scholar 

  • Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2006a. Rapid determination of nonaromatic organic acids in honey by capillary zone electrophoresis with direct ultraviolet detection. Journal of Agricultural and Food Chemistry 54:1541–1550.

    Article  CAS  PubMed  Google Scholar 

  • Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2006b. Analytical methods for the determination of organic acids in honey. Critical Reviews in Analytical Chemistry 36:3–11.

    Article  CAS  Google Scholar 

  • Michener CD. 2000. The bees of the World. Johns Hopkins University Press; Baltimore, MD, USA. 913 pp.

    Google Scholar 

  • Mutinelli F, Baggio A, Capolongo F, Piro R, Prandin L, Biasion L. 1997. A scientific note on oxalic acid by topical application for the control of varroasis. Apidologie 28:461–462.

    Article  CAS  Google Scholar 

  • Navarrete M, Casado S, Minelli M, Segura A, Bonetti A, Dinelli G, Fernández A. 2005. Direct determination of aliphatic acids in honey by coelectroosmotic capillary zone electrophoresis. Journal of Apicultural Research 44:65–70.

    CAS  Google Scholar 

  • Nelson EK, Mottern HH. 1931. Some organic acids in honey. Industrial and Engineering Chemistry 23:335.

    Article  CAS  Google Scholar 

  • OJEC-Official Journal of the European Communities. 2002. Council Directive 2001/110/EC of 20 December 2001 relating to honey. L 10:47–52. Luxembourg. European Union.

    Google Scholar 

  • Pérez-Cerrada M, Herrero-Villen MA, Maquieira A. 1989. Sugar-rich food: determination of inorganic anions by ionic chromatography. Food Chemistry 34:285–294.

    Article  Google Scholar 

  • Persano Oddo L, Heard TA, Rodríquez-Malaver A, Pérez RA, Fernández-Muiño MA, Sancho MT, Sesta G, Lusco L, Vit P. 2008. Composition and antioxidant activity of Trigona carbonaria honey from Australia. Journal of Medicinal Food 11:789–794.

    Article  Google Scholar 

  • Piana L, Ricciardelli D’Albore G, Isola A. 1989. La miel. Mundi-Prensa; Madrid, Spain. pp. 14–67.

    Google Scholar 

  • Pilz-Güther D, Speer K. 2004. Development of a GC method for simultaneous determination of organic acids in honey. Deutsche Lebensmittel-Rundschau 100:84–87.

    Google Scholar 

  • Pulcini P, Piazza MG, Allegrini F. 2004. Total gluconic acid (AGT) content in Italian unifloral honeys. Industrie Alimentari 43:263–268.

    CAS  Google Scholar 

  • Rasmussen C, Cameron SA. 2007. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Systematic Entomology 32:26–39.

    Article  Google Scholar 

  • Rodríguez-Malaver AJ, Rasmussen C, Gutiérrez MG, Gil F, Nieves B, Vit P. 2009. Properties of honey from ten species of Peruvian Stingless Bees. Natural Product Research 4:1221–1226.

    Google Scholar 

  • Roubik DW. 1995. Stingless bees: a guide to Panamian and Mesoamerican species and their nests (Hymenoptera: Apidae: Meliponinae). In Quintero D, Aiello A, eds. Insects of Panama and Mesoamerica: selected studies. Oxford University Press; Oxford, UK. pp. 495–524, p692.

    Google Scholar 

  • Ruiz-Argüeso T, Rodríguez-Navarro A. 1973. Gluconic acid-producing bacteria from honeybees and ripening honeys. Journal of General Microbiology 76:211–216.

    Article  PubMed  Google Scholar 

  • Russel KM, Molan PC, Wilkins AL, Holland PT. 1988. Identification of some antibacterial constituents of New Zealand Manuka honey. Journal of Agricultural and Food Chemistry 38:10–13.

    Article  Google Scholar 

  • Sabatini AG, Marcazzan GL, Colombo R, Garagnani M. 1994. Applicazione di un método enzimático per la determinazione dell’acido formico e dell’acido lattico presenti nel miele. Apicoltura 9:135–145.

    Google Scholar 

  • Sanz ML, González M, de Lorenzo C, Sanz J, Martínez-Castro I. 2005. A contribution to the differentiation between nectar honey and honeydew honey. Food Chemistry 91:313–317.

    Article  CAS  Google Scholar 

  • Serra-Bonvehí J, Bentabol-Manzanares A, Santos-Vilar JM. 2004. Quality evaluation of broom honey (Spartocytisus supranubius L) produced in Tenerife (The Canary Islands). Journal of the Science of Food and Agriculture 84:1097–1104.

    Article  Google Scholar 

  • Sgariglia MA, Vattuone MA, Sampietro Vattuone MM, Soberón JR, Sampietro DA. 2010. Properties of honey from Tetragonisca angustual fiebrigi and Plebeia wittmanni of Argentina. Apidologie 41:667–675.

    Article  CAS  Google Scholar 

  • Souza B, Roubik D, Barth O, Heard T, Enríquez E, Carvalho C, Villas-Bôas J, Locatelli J, Persano-Oddo L, Almeida-Muradian L, Bogdanov S, Vit P. 2006. Composition of stingless bee honey: setting quality standards. Interciencia 31:867–875.

    Google Scholar 

  • Steeg E, Montag A. 1988. Quantitative Bestimmung aromatischer Carbonsäuren in Honig. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 187:115–120.

    Article  CAS  Google Scholar 

  • Stinson EE, Subers MH, Petty J, White JW Jr. 1960. The composition of honey. V. Separation and identification of the organic acids. Archives of Biochemistry and Biophysics 89:6–12.

    Article  CAS  PubMed  Google Scholar 

  • Stoya W, Wachendoerfer G, Kary I, Siebentritt P, Kaiser E. 1986. Formic acid as a therapeutic against varroatose and its effect on honey. Deutsche Lebensmittel-Rundschau 82:217–221.

    CAS  Google Scholar 

  • Stoya W, Wachendoerfer G, Kary I, Siebentritt P, Kaiser E. 1987. Milchsäure als Therapeutikum gegen Varroatose und ihre Auswirkung auf den Honig. Deutsche Lebensmittel-Rundschau 83:283–286.

    CAS  Google Scholar 

  • Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2002a. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. Journal of Chromatography A 955:207–214.

    Article  PubMed  Google Scholar 

  • Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J. 2002b. Solid-phase extraction procedure to remove organic acids from honey. Journal of Chromatography B 770:77–82.

    Article  Google Scholar 

  • Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. 2006. Capillary zone electrophoresis method for the determination of inorganic anions and formic acid in honey. Journal of Agricultural and Food Chemistry 54:9292–9296.

    Article  PubMed  Google Scholar 

  • Talpay B. 1988. Inhaltsstoffe des Honigs-Citronensäure (Citrat). Deutsche Lebensmittel-Rundschau 84:41–44.

    CAS  Google Scholar 

  • Talpay B. 1989. Inhaltsstoffe des Honigs-Ameisensäure (Formiat). Deutsche Lebensmittel-Rundschau 85:143–147.

    CAS  Google Scholar 

  • Tourn ML, Lombard A, Belliardo F, Buffa M. 1980. Quantitative analysis of carbohydrates and organic acids in honeydew, honey and royal jelly by enzymic methods. Journal of Apicultural Research 19:144–146.

    CAS  Google Scholar 

  • Van Veen JW, Bootsma MC, Arce H, Hallim MKI, Sommeijer MJ. 1990. Biological limiting factors for the beekeeping with stingless bees in the Caribbean and Central America. In Veeresh GK, Mallik B, Viraktamath CA, eds. Social insects and the environment. Oxford and IBH Publishing Co; New Delhi. pp. 472–447.

    Google Scholar 

  • Vit P, Tomás-Barberán FA. 2004. Flavonoids in Meliponinae honeys from Venezuela related to their botanical, geographical and entomological origin to assess their putative anticataract activity. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 206:288–293.

    Article  Google Scholar 

  • Vit P, Bogdanov S, Kilchenmann V. 1994. Composition of Venezuelan honeys from stingless bees (Apidae: Meliponinae) and Apis mellifera L. Apidologie 25:278–288.

    Article  CAS  Google Scholar 

  • Vit P, Medina M, Enriquez ME. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, México and Venezuela. Bee World 85:2–5.

    Google Scholar 

  • Vit P, Gutiérrez MG, Rodríguez-Malaver AJ, Aguilera G, Fernández-Díaz C, Tricio AE. 2009a. Comparación de mieles producidas por la abeja nativa yateí (Tetragonisca fiebrigi) en Argentina y Paraguay. Acta Bioquímica Clínica Latinoamericana 43:219–226.

    Google Scholar 

  • Vit P, Rodríguez-Malaver A, Roubik DW, Moreno E, Almeida Souza B, Sancho MT, Fernández-Muiño MA, Almeida-Anacleto D, Marchini LC, Gil F, González C, Aguilera G, Nieves B. 2009b. Expanded parameters to assess the quality of honey from Venezuelan Apis mellifera. Journal of ApiProduct and ApiMedical Science 1:72–81.

    Article  Google Scholar 

  • Vit P, Ferrufino U, Pascual-Maté A, Fernández-Muiño MA, Sancho MT. 2010. How Spanish preceive Bolivian pot honeys from six Meliponini species. Poster. 4th European Conference of Apidology. Metu-Ankara. Turkey.

    Google Scholar 

  • Vorwohl G. 1964. Die Beziehung zwischen der elektrischen Leitfähigkeit der Honige und ihrer trachtmässigen Herkunft. Annales de l’Abeille 7:301–309.

    Article  Google Scholar 

  • Wahdan HAL. 1998. Causes of the antimicrobial activity of honey. Infection 26:30–35.

    Article  CAS  Google Scholar 

  • Wanasundara PKJPD, Shahidi F. 2005. Dietary lipids in health antioxidants: science, technology, and applications. In Shahidi F, ed. Bailey’s industrial edible oil and fat products. 6th Edition. John Wiley & Sons; New Jersey, USA. pp. 431–489.

    Google Scholar 

  • Weston RJ, Mitchell KR, Allen KL. 1999. Antibacterial phenolic components of New Zealand manuka honey. Food Chemistry 64:295–301.

    Article  CAS  Google Scholar 

  • White JW Jr. 1978. Honey. In Stewart GF, ed. “Advances in Food Research”. Board. Academic Press; New York. USA. Vol 24, pp. 287–364.

    CAS  Google Scholar 

  • White JW Jr. 1979a. Composición y propiedades de la miel. McGregor SE La Apicultura en los Estados Unidos. Limusa. México. pp. 57–66.

    Google Scholar 

  • White JW Jr. 1979b. Composition of honey. In Crane E, ed. Honey: a comprehensive survey. Heinemannl; London, UK. pp. 157–206.

    Google Scholar 

  • Wilkins AL, Lu Y, Tan ST. 1995. Extractives from New Zealand honeys. 5. Aliphatic dicarboxilic acids in New Zealand Rewerewa (Knightea excelsa) honey. Journal of Agricultural and Food Chemistry 43:3021–3025.

    Article  CAS  Google Scholar 

  • Wille A. 1979. Phylogeny and relationships among the genera and subgenera of the stingless bees (Meliponinae) of the World. Revista de Biología Tropical 27:241–277.

    Google Scholar 

  • Yatsunami K, Echigo T. 1984. Antibacterial activity of honey and royal jelly. Honeybee Science 5:125–130.

    Google Scholar 

Download references

Acknowledgments

To Dr. Tim Heard from CSIRO, Brisbane Australia for providing the Tetragonula carbonaria honey, and for English proof reading of the manuscript. To Prof. Patricia Vit from the Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida, Venezuela, for providing the samples of Melipona favosa honey, and editorial care. To Prof. João MF Camargo from the Biology Department, Universidade de São Paulo, Ribeirão Preto, Brazil, for the identification of the Melipona favosa bee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Sancho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sancho, M.T., Mato, I., Huidobro, J.F., Fernández-Muiño, M.A., Pascual-Maté, A. (2013). Nonaromatic Organic Acids of Honeys. In: Vit, P., Pedro, S., Roubik, D. (eds) Pot-Honey. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4960-7_32

Download citation

Publish with us

Policies and ethics