Direct Acoustic Obstacle Scattering

  • David Colton
  • Rainer Kress
Part of the Applied Mathematical Sciences book series (AMS, volume 93)


This chapter is devoted to the solution of the direct obstacle scattering problem for acoustic waves. As in [64], we choose the method of integral equations for solving the boundary value problems. However, we decided to leave out some of the details in the analysis. In particular, we assume that the reader is familiar with the Riesz–Fredholm theory for operator equations of the second kind in dual systems as described in [64] and [205]. We also do not repeat the technical proofs for the jump relations and regularity properties for single- and double-layer potentials.


Boundary Integral Equation Helmholtz Equation Quadrature Rule Field Pattern Jump Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abubakar, A., and van den Berg, P.: Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects, Jour. Comp. Phys. 195, 236–262 (2004).Google Scholar
  2. 2.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.Google Scholar
  3. 3.
    Akduman, I., and Kress, R.: Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Science 38, 1055–1064 (2003).Google Scholar
  4. 4.
    Aktosun, T., Gintides, G., and Papanicolaou, V.: The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 27, 115004 (2011).Google Scholar
  5. 5.
    Alessandrini, G., and Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Amer. Math. Soc. 133, 1685–1691 (2005).Google Scholar
  6. 6.
    Alves, C.J.S., and Ha-Duong, T.: On inverse scattering by screens. Inverse Problems 13, 1161–1176 (1997).Google Scholar
  7. 7.
    Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scattering problem for acoustic waves. J. Diff. Equations 46, 46–58 (1982).Google Scholar
  8. 8.
    Angell, T.S., Colton, D., and Kress, R.: Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553–569 (1989).Google Scholar
  9. 9.
    Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52, 1597–1610 (1992).Google Scholar
  10. 10.
    Angell, T.S., Kleinman, R.E., and Hettlich, F.: The resistive and conductive problems for the exterior Helmholtz equation. SIAM J. Appl. Math. 50, 1607–1622 (1990).Google Scholar
  11. 11.
    Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission problem for the Helmholtz equation. Inverse Problems 3, 149–180 (1987).Google Scholar
  12. 12.
    Aramini, R., Caviglia, G., Masa, A., and Piana, M.: The linear sampling method and energy conservation. Inverse Problems 26, 05504 (2010).Google Scholar
  13. 13.
    Arens, T.: Why linear sampling works. Inverse Problems 20, 163–173 (2004).Google Scholar
  14. 14.
    Arens, T., and Lechleiter, A.: The linear sampling method revisited. Jour. Integral Equations and Applications 21, 179–202 (2009).Google Scholar
  15. 15.
    Atkinson, K.E.: The numerical solution of Laplace’s equation in three dimensions. SIAM J. Numer. Anal. 19, 263–274 (1982).Google Scholar
  16. 16.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Univ. Press, Cambridge 1997.Google Scholar
  17. 17.
    Bakushinskii, A.B.: The problem of the convergence of the iteratively regularized Gauss–Newton method. Comput. Maths. Maths. Phys. 32, 1353–1359 (1992).Google Scholar
  18. 18.
    Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig 1986.Google Scholar
  19. 19.
    Ben Hassen, F., Erhard, K., and Potthast, R.: The point source method for 3d reconstructions for the Helmholtz and Maxwell equations. Inverse Problems 22, 331–353 (2006).Google Scholar
  20. 20.
    Bers, L., John, F., and Schechter, M.: Partial Differential Equations. John Wiley, New York 1964.Google Scholar
  21. 21.
    Blaschke, B., Neubauer, A., and Scherzer, O: On convergence rates for the iteratively regularized Gauss–Newton method. IMA J. Numerical Anal. 17, 421–436 (1997).Google Scholar
  22. 22.
    Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.Google Scholar
  23. 23.
    Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).Google Scholar
  24. 24.
    Bojarski, N.N.: Three dimensional electromagnetic short pulse inverse scattering. Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse 1967.Google Scholar
  25. 25.
    Bojarski, N.N.: A survey of the physical optics inverse scattering identity. IEEE Trans. Ant. Prop. AP-20, 980–989 (1982).Google Scholar
  26. 26.
    Brakhage, H., and Werner, P.: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965).Google Scholar
  27. 27.
    Bukhgeim, A.L.: Recovering a potential from Cauchy data in the two dimensional case. Jour. Inverse Ill-Posed Problems 16, 19–33 (2008).Google Scholar
  28. 28.
    Burger, M., Kaltenbacher, B., and Neubauer, A.: Iterative solution methods. In: Handbook of Mathematical Methods in Imaging (Scherzer, ed.) Springer, Berlin 345–384 (2011).Google Scholar
  29. 29.
    Cakoni, F.: Recent developments in the qualitative approach to inverse electromagnetic scattering theory. J. Comp. Appl. Math. 204, 242–253 (2007).Google Scholar
  30. 30.
    Cakoni, F., and Colton, D.: Combined far field operators in electromagnetic inverse scattering theory. Math. Methods Appl. Sci. 26, 293–314 (2003).Google Scholar
  31. 31.
    Cakoni, F., and Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004).Google Scholar
  32. 32.
    Cakoni, F., and Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin 2006.Google Scholar
  33. 33.
    Cakoni, F., Colton, D., and Gintides, D.: The interior transmission eigenvalue problem,. SIAM J. Math. Anal. 42, 2912–2921 (2010).Google Scholar
  34. 34.
    Cakoni, F., Colton, D., and Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser. 1 348, 379–383 (2010).Google Scholar
  35. 35.
    Cakoni, F., Colton, D. and Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010).Google Scholar
  36. 36.
    Cakoni, F., Colton, D., and Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM Publications, Philadelphia, 2011.Google Scholar
  37. 37.
    Cakoni, F., Colton, D., Monk, P., and Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26, 07404 (2010).Google Scholar
  38. 38.
    Cakoni, F., and Gintides, D.: New results on transmission eigenvalues. Inverse Problems and Imaging 4, 39–48 (2010).Google Scholar
  39. 39.
    Cakoni, F., Gintides, D., and Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010).Google Scholar
  40. 40.
    Cakoni, F., and Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Applicable Analysis 88, 475–493 (2009).Google Scholar
  41. 41.
    Cakoni, F., and Kirsch, A.: On the interior transmission eigenvalue problem. Int. Jour. Comp. Sci. Math. 3, 142–16 (2010).Google Scholar
  42. 42.
    Calderón, A.P.: The multipole expansions of radiation fields. J. Rat. Mech. Anal. 3, 523–537 (1954).Google Scholar
  43. 43.
    Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Mechanics. Soc. Brasileira de Matemática, Rio de Janerio, 65–73 (1980).Google Scholar
  44. 44.
    Catapano, I., Crocco, L., and Isernia, T.: On simple methods for shape reconstruction of unknown scatterers. IEEE Trans. Antennas Prop. 55, 1431–1436 (2007).Google Scholar
  45. 45.
    Chadan, K., Colton, D., Päivärinta, L., and Rundell, W.: An Introduction to Inverse Scattering and Inverse Spectral Problems. SIAM Publications, Philadelphia 1997.Google Scholar
  46. 46.
    Chadan, K., and Sabatier, P. C.: Inverse Problems in Quantum Scattering Theory. Springer, Berlin 1989.Google Scholar
  47. 47.
    Chandler-Wilde, S. N., Graham, I. G., Langdon, S., and Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. Jour. Integral Equations and Appl. 21, 229–279 (2009).Google Scholar
  48. 48.
    Chavent, G., Papanicolaou, G., Sacks, P., and Symes, W.: Inverse Problems in Wave Propagation. Springer, Berlin1997.Google Scholar
  49. 49.
    Cheng, J., and Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19, 1361–1384 (2003).Google Scholar
  50. 50.
    Chew, W: Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York 1990.Google Scholar
  51. 51.
    Collino, C., Fares, M., and Haddar, H.: Numerical and analytical studies of the linear sampling method in electromagnetic inverse scattering problems. Inverse Problems 19, 1279–1298 (2003).Google Scholar
  52. 52.
    Colton, D.: Partial Differential Equations. Dover Publications, New York 2004.Google Scholar
  53. 53.
    Colton, D., Coyle, J., and Monk, P. : Recent developments in inverse acoustic scattering theory. SIAM Review 42, 369–414 (2000).Google Scholar
  54. 54.
    Colton, D., and Erbe, C.: Spectral theory of the magnetic far field operator in an orthotropic medium. In: Nonlinear Problems in Applied Mathematics (Angell et al, eds). SIAM, Philadelphia, 96–103 (1995).Google Scholar
  55. 55.
    Colton, D., Haddar, H., and Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002).Google Scholar
  56. 56.
    Colton, D., and Hähner, P.: Modified far field operators in inverse scattering theory. SIAM J. Math. Anal. 24, 365–389 (1993).Google Scholar
  57. 57.
    Colton, D., and Kirsch, A.: Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal. 15, 996–1006 (1984).Google Scholar
  58. 58.
    Colton, D., and Kirsch, A.: Karp’s theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783–788 (1988).Google Scholar
  59. 59.
    Colton, D., and Kirsch, A.: An approximation problem in inverse scattering theory. Applicable Analysis 41, 23–32 (1991).Google Scholar
  60. 60.
    Colton, D., and Kirsch, A.: The use of polarization effects in electromagnetic inverse scattering problems. Math. Meth. in the Appl. Sci. 15, 1–10 (1992).Google Scholar
  61. 61.
    Colton, D., and Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383–393 (1996).Google Scholar
  62. 62.
    Colton, D., Kirsch, A., and Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989).Google Scholar
  63. 63.
    Colton, D., and Kress, R.: The impedance boundary value problem for the time harmonic Maxwell equations. Math. Meth. in the Appl. Sci. 3, 475–487 (1981).Google Scholar
  64. 64.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. Wiley-Interscience Publication, New York 1983.Google Scholar
  65. 65.
    Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).Google Scholar
  66. 66.
    Colton, D., and Kress, R.: Karp’s theorem in electromagnetic scattering theory. Proc. Amer. Math. Soc. 104, 764–769 (1988).Google Scholar
  67. 67.
    Colton, D., and Kress, R.: Time harmonic electromagnetic waves in an inhomogeneous medium. Proc. Royal Soc. Edinburgh 116 A, 279–293 (1990).Google Scholar
  68. 68.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26, 601–615 (1995).Google Scholar
  69. 69.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995).Google Scholar
  70. 70.
    Colton, D., and Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Applied Science 24, 1289–1303 (2001).Google Scholar
  71. 71.
    Colton, D., and Kress, R.: Using fundamental solutions in inverse scattering. Inverse Problems 22, R49–R66 (2006).Google Scholar
  72. 72.
    Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039–1053 (1985).Google Scholar
  73. 73.
    Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).Google Scholar
  74. 74.
    Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Comp. 8, 278–291 (1987).Google Scholar
  75. 75.
    Colton, D., and Monk, P: The inverse scattering problem for time harmonic acoustic waves in a penetrable medium. Quart. J. Mech. Appl. Math. 40, 189–212 (1987).Google Scholar
  76. 76.
    Colton, D., and Monk, P: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988).Google Scholar
  77. 77.
    Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. Inverse Problems 5, 1013–1026 (1989).Google Scholar
  78. 78.
    Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium II. Inverse Problems 6, 935–947 (1990).Google Scholar
  79. 79.
    Colton, D., and Monk, P: A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. J. Comp. Appl. Math. 42, 5–16 (1992).Google Scholar
  80. 80.
    Colton, D., and Monk, P.: On a class of integral equations of the first kind in inverse scattering theory. SIAM J. Appl. Math. 53, 847–860 (1993).Google Scholar
  81. 81.
    Colton, D., and Monk, P.: A modified dual space method for solving the electromagnetic inverse scattering problem for an infinite cylinder. Inverse Problems 10, 87–107 (1994).Google Scholar
  82. 82.
    Colton, D., and Monk, P.: A new approach to detecting leukemia: Using computational electromagnetics. Comp. Science and Engineering 2, 46–52 (1995).Google Scholar
  83. 83.
    Colton, D., and Päivärinta, L.: Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium. Math. Proc. Camb. Phil. Soc. 103, 561–575 (1988).Google Scholar
  84. 84.
    Colton, D., and L. Päivärinta, L.: Far-field patterns for electromagnetic waves in an inhomogeneous medium. SIAM J. Math. Anal. 21, 1537–1549 (1990).Google Scholar
  85. 85.
    Colton, D. and Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Rational Mech. Anal. 119, 59–70 (1992).Google Scholar
  86. 86.
    Colton, D., Päivärinta, L., and Sylvester, J.: The interior transmission problem. Inverse Problems and Imaging 1, 13–28 (2007).Google Scholar
  87. 87.
    Colton, D., Piana, M., and Potthast, R.: A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Problems 13, 1477–1493 (1997).Google Scholar
  88. 88.
    Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).Google Scholar
  89. 89.
    Colton, D., and Sleeman, B.D.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh Math. Soc. 44, 449–454 (2001).Google Scholar
  90. 90.
    Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham 1963.Google Scholar
  91. 91.
    Davis, P.J., and Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York 1975.Google Scholar
  92. 92.
    Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge 2012.Google Scholar
  93. 93.
    Dolph, C. L.: The integral equation method in scattering theory. In: Problems in Analysis (Gunning, ed). Princeton University Press, Princeton, 201–227 (1970).Google Scholar
  94. 94.
    Elliott, D.: Sigmoidal transformations and the trapezoidal rule. ANZIAM Jour. B 40, E77–E137 (1998).Google Scholar
  95. 95.
    Elliott, D. and Prössdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math. 70, 427–452 (1995).Google Scholar
  96. 96.
    Engl, H.W., Hanke, M. and Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publisher, Dordrecht 1996.Google Scholar
  97. 97.
    Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York 1956.Google Scholar
  98. 98.
    Farhat, C., Tezaur, R., and Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Problems 18, 1229–1246 (2002).Google Scholar
  99. 99.
    Ganesh, M., and Graham, I. G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004).Google Scholar
  100. 100.
    Ganesh, M., and Hawkins, S. C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006).Google Scholar
  101. 101.
    Ganesh, M., and Hawkins, S. C.: An efficient surface integral equation method for the time-harmonic Maxwell equations. ANZIAM J. 48, C17–C33 (2007).Google Scholar
  102. 102.
    Ganesh, M., and Hawkins, S. C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comput. Phys. 227, 4543–4562 (2008).Google Scholar
  103. 103.
    Gerlach, T. and Kress, R.: Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12, 619–625 (1996).Google Scholar
  104. 104.
    Gieseke, B.: Zum Dirichletschen Prinzip für selbstadjungierte elliptische Differentialoperatoren. Math. Z. 68, 54–62 (1964).Google Scholar
  105. 105.
    Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.Google Scholar
  106. 106.
    Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Problems 21, 1195–1205 (2005).Google Scholar
  107. 107.
    Goldstein, C.I.: The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem. Numer. Math. 38, 61–82 (1981).Google Scholar
  108. 108.
    Gosh Roy, D.N., and Couchman, L.S. : Inverse Problems and Inverse Scattering of Plane Waves. Academic Press, New York 2002.Google Scholar
  109. 109.
    Graham, I. G., and Sloan, I. H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in I​R3. Numer. Math. 92, 289–323 (2002).Google Scholar
  110. 110.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston 1985.Google Scholar
  111. 111.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston 1984.Google Scholar
  112. 112.
    Gutman, S., and Klibanov, M.: Regularized quasi–Newton method for inverse scattering problems. Math. Comput. Modeling 18, 5–31 (1993).Google Scholar
  113. 113.
    Gutman, S., and Klibanov, M.: Two versions of quasi–Newton method for multidimensional inverse scattering problem. J. Comput. Acoust. 1, 197–228 (1993).Google Scholar
  114. 114.
    Gutman, S., and Klibanov, M.: Iterative method for multidimensional inverse scattering problems at fixed frequencies. Inverse Problems 10, 573–599 (1994).Google Scholar
  115. 115.
    Haas, M., and Lehner, G.: Inverse 2D obstacle scattering by adaptive iteration. IEEE Transactions on Magnetics 33, 1958–1961 (1997)Google Scholar
  116. 116.
    Haas, M., Rieger, W., Rucker, W., and Lehner, G.: Inverse 3D acoustic and electromagnetic obstacle scattering by iterative adaption. In: Inverse Problems of Wave Propagation and Diffraction (Chavent and Sabatier, eds). Springer, Berlin 1997.Google Scholar
  117. 117.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin 1985.Google Scholar
  118. 118.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven 1923.Google Scholar
  119. 119.
    Haddar, H., and Kress. R.: On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65, 194–208 (2004).Google Scholar
  120. 120.
    Hähner, P.: Abbildungseigenschaften der Randwertoperatoren bei Randwertaufgaben für die Maxwellschen Gleichungen und die vektorielle Helmholtzgleichung in Hölder- und L 2–Räumen mit einer Anwendung auf vollständige Flächenfeldsysteme. Diplomarbeit, Göttingen 1987.Google Scholar
  121. 121.
    Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).Google Scholar
  122. 122.
    Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990.Google Scholar
  123. 123.
    Hähner, P.: A uniqueness theorem for the Maxwell equations with L 2 Dirichlet boundary conditions. Meth. Verf. Math. Phys. 37, 85–96 (1991).Google Scholar
  124. 124.
    Hähner, P.: A uniqueness theorem for a transmission problem in inverse electromagnetic scattering. Inverse Problems 9, 667–678 (1993).Google Scholar
  125. 125.
    Hähner, P.: An approximation theorem in inverse electromagnetic scattering. Math. Meth. in the Appl. Sci. 17, 293-303 (1994).Google Scholar
  126. 126.
    Hähner, P.: A periodic Faddeev-type solution operator. Jour. of Differential Equations 128, 300–308 (1996).Google Scholar
  127. 127.
    Hähner, P.: Scattering by media. In: Scattering (Pike and Sabatier, eds). Academic Press, New York, 74–94, 2002.Google Scholar
  128. 128.
    Hanke, M.: A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems 13, 75–95 (1997).Google Scholar
  129. 129.
    Hanke, M.: Why linear sampling really seems to work. Inverse Problems and Imaging 2, 373–395 (2008).Google Scholar
  130. 130.
    Hanke, M., Hettlich, F., and Scherzer, O.: The Landweber iteration for an inverse scattering problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3, Part C (Wang et al, eds). The American Society of Mechanical Engineers, New York, 909–915 (1995).Google Scholar
  131. 131.
    Hanke, M., Neubauer, A., and Scherzer, O.: A convergence analysis for the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995).Google Scholar
  132. 132.
    Harbrecht, H., and Hohage. T.: Fast methods for three-dimensional inverse obstacle scattering problems. Jour. Integral Equations and Appl. 19, 237–260 (2007).Google Scholar
  133. 133.
    Hartman, P., and Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961).Google Scholar
  134. 134.
    Hellwig, G.: Partial Differential Equations. Blaisdell Publishing, New York 1964.Google Scholar
  135. 135.
    Hettlich, F.: Die Integralgleichungsmethode bei Streuung an Körpern mit einer dünnen Schicht. Diplomarbeit, Göttingen 1989.Google Scholar
  136. 136.
    Hettlich, F.: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10, 129–144 (1994).Google Scholar
  137. 137.
    Hettlich, F.: Fréchet derivatives in inverse obstacle scattering. Inverse Problems 11, 371–382 (1995).Google Scholar
  138. 138.
    Hettlich, F.: An iterative method for the inverse scattering problem from sound-hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996).Google Scholar
  139. 139.
    Hettlich, F., and Rundell, W.: A second degree method for nonlinear inverse problem. SIAM J. Numer. Anal. 37, 587–620 (2000).Google Scholar
  140. 140.
    Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for operators with constant coefficients. SIAM J. Math. Anal. 42, 2965–2986 (2010).Google Scholar
  141. 141.
    Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for elliptic operators. SIAM J. Math. Anal. 43, 2630–2639 (2011).Google Scholar
  142. 142.
    Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279–1299 (1997).Google Scholar
  143. 143.
    Hohage, T.: Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially Ill-Posed Problems. Dissertation, Linz 1999.Google Scholar
  144. 144.
    Hohage, T.: On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Problems 17, 1743–1763 (2001).Google Scholar
  145. 145.
    Hohage, T.: Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comp. Phys. 214, 224–238 (2006).Google Scholar
  146. 146.
    Hohage, T., and Langer, S.: Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems 26, 074011 (2010).Google Scholar
  147. 147.
    Hsiao, G.C.: The coupling of boundary element and finite element methods. Z. Angew. Math. Mech. 70, T493–T503 (1990).Google Scholar
  148. 148.
    Hsiao, G.C., and Wendland, W. L.: Boundary Integral Equations. Springer, Berlin 2008.Google Scholar
  149. 149.
    Ikehata, M.: Reconstruction of the shape of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 14, 949–954 (1998).Google Scholar
  150. 150.
    Ikehata, M.: Reconstruction of obstacle from boundary measurements. Wave Motion 30, 205–223 (1999).Google Scholar
  151. 151.
    Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering problem. IEEE Trans. Ant. Prop. AP-18, 633–642 (1970).Google Scholar
  152. 152.
    Isakov, V.: On uniqueness in the inverse transmission scattering problem. Comm. Part. Diff. Equa. 15, 1565–1587 (1990).Google Scholar
  153. 153.
    Isakov, V.: Inverse Problems for Partial Differential Equations. 2nd ed, Springer, Berlin 2006.Google Scholar
  154. 154.
    Ivanov, K.V.: Integral equations of the first kind and an approximate solution for the inverse problem of potential. Soviet Math. Doklady 3, 210–212 (1962) (English translation).Google Scholar
  155. 155.
    Ivanov, K.V.: On linear problems which are not well-posed. Soviet Math. Doklady 3, 981–983 (1962) (English translation).Google Scholar
  156. 156.
    Ivanyshyn, O.: Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems and Imaging 1, 609–622 (2007).Google Scholar
  157. 157.
    Ivanyshyn, O.: Nonlinear Boundary Integral Equations in Inverse Scattering. Dissertation, Göttingen, 2007.Google Scholar
  158. 158.
    Ivanyshyn, O., and Johansson, T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle. J. Integral Equations Appl. 19, 289–308 (2007).Google Scholar
  159. 159.
    Ivanyshyn, O., and Johansson, T.: A coupled boundary integral equation method for inverse sound-soft scattering. In: Proceedings of waves 2007. The 8th international conference on mathematical and numerical aspects of waves, pp. 153–155 University of Reading 2007.Google Scholar
  160. 160.
    Ivanyshyn, O., and Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering, Fotiatis, Massalas, editors, pp 39–50 World Scientific, Singapore, 2006.Google Scholar
  161. 161.
    Ivanyshyn, O., and Kress, R.: Inverse scattering for planar cracks via nonlinear integral equations. Math. Meth. Appl. Sciences 31, 1221–1232 (2007).Google Scholar
  162. 162.
    Ivanyshyn, O., and Kress, R.: Identification of sound-soft 3D obstacles from phaseless data. Inverse Problems and Imaging 4, 131–149 (2010).Google Scholar
  163. 163.
    Ivanyshyn, O., and Kress, R.: Inverse scattering for surface impedance from phase-less far field data. J. Comp. Phys. 230, 3443–3452 (2011).Google Scholar
  164. 164.
    Ivanyshyn, O., Kress, R., and Serranho, P.: Huygens’ principle and iterative methods in inverse obstacle scattering. Adv. Comput. Math. 33, 413–429 (2010).Google Scholar
  165. 165.
    Jeon, Y.: A Nyström method for boundary integral equations in domains with a piecewise smooth boundary. Jour. Integral Equations Appl. 5, 221–242 (1993).Google Scholar
  166. 166.
    Johansson, T., and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007).Google Scholar
  167. 167.
    Jones, D.S.: Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford 1979.Google Scholar
  168. 168.
    Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.Google Scholar
  169. 169.
    Jörgens, K.: Lineare Integraloperatoren. Teubner–Verlag, Stuttgart 1970.Google Scholar
  170. 170.
    Kabanikhin, S.I.: Inverse and Ill-posed Problems: Theory and Applications. de Gruyter, Berlin-Boston 2011Google Scholar
  171. 171.
    Kaltenbacher, B., Neubauer, A., and Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin, 2008.Google Scholar
  172. 172.
    Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromagnetic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291-300 (1962).Google Scholar
  173. 173.
    Kedzierawski, A.: The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium with complex refraction index. J. Comp. Appl. Math. 47, 83-100 (1993).Google Scholar
  174. 174.
    Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin 1929.Google Scholar
  175. 175.
    Kersten, H.: Grenz- und Sprungrelationen für Potentiale mit quadratsummierbarer Dichte. Resultate d. Math. 3, 17–24 (1980).Google Scholar
  176. 176.
    Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986).Google Scholar
  177. 177.
    Kirsch, A.: Properties of far field operators in acoustic scattering. Math. Meth. in the Appl. Sci. 11, 773–787 (1989).Google Scholar
  178. 178.
    Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).Google Scholar
  179. 179.
    Kirsch, A.: Remarks on some notions of weak solutions for the Helmholtz equation. Applicable Analysis 47, 7–24 (1992).Google Scholar
  180. 180.
    Kirsch, A.: The domain derivative and two applications in inverse scattering. Inverse Problems 9, 81–96 (1993).Google Scholar
  181. 181.
    Kirsch, A.: Numerical algorithms in inverse scattering theory. In: Ordinary and Partial Differential Equations, Vol. IV, (Jarvis and Sleeman, eds). Pitman Research Notes in Mathematics 289, Longman, London 93–111 (1993).Google Scholar
  182. 182.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. 2nd ed, Springer, Berlin 2011.Google Scholar
  183. 183.
    Kirsch, A.: Characterization of the shape of the scattering obstacle by the spectral data of the far field operator. Inverse Problems 14, 1489–1512 (1998).Google Scholar
  184. 184.
    Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application to inverse scattering theory. Inverse Problems 15, 413–429 (1999).Google Scholar
  185. 185.
    Kirsch, A.: On the existence of transmission eigenvalues. Inverse Problems and Imaging 3, 155–172 (2009).Google Scholar
  186. 186.
    Kirsch, A., and Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford, 2008.Google Scholar
  187. 187.
    Kirsch, A., and Kress, R.: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77, 93–102 (1986).Google Scholar
  188. 188.
    Kirsch, A., and Kress, R.: A numerical method for an inverse scattering problem. In: Inverse Problems (Engl and Groetsch, eds). Academic Press, Orlando, 279–290 (1987).Google Scholar
  189. 189.
    Kirsch, A., and Kress, R.: An optimization method in inverse acoustic scattering. In: Boundary elements IX, Vol 3. Fluid Flow and Potential Applications (Brebbia et al, eds). Springer, Berlin 3–18 (1987).Google Scholar
  190. 190.
    Kirsch, A., and Kress, R.: Uniqueness in inverse obstacle scattering. Inverse Problems 9, 285–299 (1993).Google Scholar
  191. 191.
    Kirsch, A., Kress, R., Monk, P., and Zinn, A.: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4, 749–770 (1988).Google Scholar
  192. 192.
    Kirsch, A., and Monk, P.: An analysis of the coupling of finite element and Nyström methods in acoustic scattering. IMA J. Numerical Anal. 14, 523–544 (1994).Google Scholar
  193. 193.
    Kleinman, R., and van den Berg, P.: A modified gradient method for two dimensional problems in tomography. J. Comp. Appl. Math. 42, 17–35 (1992).Google Scholar
  194. 194.
    Kleinman, R., and van den Berg, P.: An extended range modified gradient technique for profile inversion. Radio Science 28, 877–884 (1993).Google Scholar
  195. 195.
    Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215–235 (1979).Google Scholar
  196. 196.
    Kress, R.: Ein ableitungsfreies Restglied für die trigonometrische Interpolation periodischer analytischer Funktionen. Numer. Math. 16, 389–396 (1971).Google Scholar
  197. 197.
    Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Q. Jl. Mech. appl. Math. 38, 323–341 (1985).Google Scholar
  198. 198.
    Kress, R.: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91–98 (1986).Google Scholar
  199. 199.
    Kress, R.: On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation. Math. Meth. in the Appl. Sci. 9, 335–341 (1987).Google Scholar
  200. 200.
    Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990).Google Scholar
  201. 201.
    Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Mathl. Comput. Modelling 15, 229–243 (1991).Google Scholar
  202. 202.
    Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comp. Appl. Math. 61, 345–360 (1995).Google Scholar
  203. 203.
    Kress, R.: Inverse scattering from an open arc. Math. Meth. in the Appl. Sci. 18, 267–293 (1995).Google Scholar
  204. 204.
    Kress, R.: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formululations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67–92 (1997).Google Scholar
  205. 205.
    Kress, R.: Linear Integral Equations. 2nd ed, Springer, Berlin 1999.Google Scholar
  206. 206.
    Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Problems 19, 91–104 (2003).Google Scholar
  207. 207.
    Kress, R., and Päivärinta, L.: On the far field in obstacle scattering. SIAM J. Appl. Math. 59, 1413–1426 (1999).Google Scholar
  208. 208.
    Kress, R., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 10, 1145–1157 (1994).Google Scholar
  209. 209.
    Kress, R., and Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data. In: Inverse Problems in Medical Imaging and Nondestructive Testing (Engl et al, eds). Springer, Wien 75–92 (1997).Google Scholar
  210. 210.
    Kress, R., and Rundell, W.: Inverse obstacle scattering using reduced data. SIAM J. Appl. Math. 59, 442–454 (1999).Google Scholar
  211. 211.
    Kress, R., and Rundell, W.: Inverse scattering for shape and impedance. Inverse Problems 17, 1075–1085 (2001).Google Scholar
  212. 212.
    Kress, R., and Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005).Google Scholar
  213. 213.
    Kress, R., and Serranho, P.: A hybrid method for two-dimensional crack reconstruction. Inverse Problems 21, 773–784 (2005)Google Scholar
  214. 214.
    Kress, R., and Serranho, P.: A hybrid method for sound-hard obstacle reconstruction. J. Comput. Appl. Math. 24, 418–427 (2007).Google Scholar
  215. 215.
    Kress, R., Tezel, N., and Yaman, F.: A second order Newton method for sound soft inverse obstacle scattering. Jour. Inverse and Ill-Posed Problems 17, 173–185 (2009).Google Scholar
  216. 216.
    Kress, R., and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Comp. Appl. Math. 42, 49–61 (1992).Google Scholar
  217. 217.
    Kussmaul, R.: Ein numerisches Verfahren zur Lösung des Neumannschen Aussenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing 4, 246–273 (1969).Google Scholar
  218. 218.
    Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127–467 (1987).Google Scholar
  219. 219.
    Lax, P.D.: Symmetrizable linear transformations. Comm. Pure Appl. Math. 7, 633–647 (1954).Google Scholar
  220. 220.
    Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.Google Scholar
  221. 221.
    Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs 1965.Google Scholar
  222. 222.
    Lee, K.M.: Inverse scattering via nonlinear integral equations for a Neumann crack. Inverse Problems 22, 1989–2000 ( 2006).Google Scholar
  223. 223.
    Leis, R.: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung. Math. Z. 90, 205–211 (1965)Google Scholar
  224. 224.
    Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.Google Scholar
  225. 225.
    Le Louër, F.: Fast methods for the shape identification problem of a perfectly conducting obstacle. In preparation.Google Scholar
  226. 226.
    Leung, Y.J., and Colton,D.: Complex transmission eigenvalues for spherically stratified media. Inverse Problems 28, 07505 (2012).Google Scholar
  227. 227.
    Levine, L.M.: A uniqueness theorem for the reduced wave equation. Comm. Pure Appl. Math. 17, 147–176 (1964).Google Scholar
  228. 228.
    Lin, T.C.: The numerical solution of Helmholtz’s equation for the exterior Dirichlet problem in three dimensions. SIAM J. Numer. Anal. 22, 670–686 (1985).Google Scholar
  229. 229.
    Liu, C.: Inverse obstacle problem: local uniqueness for rougher obstacles and the identification of a ball. Inverse Problems 13, 1063–1069 (1997).Google Scholar
  230. 230.
    Liu, H., Yamamoto, M. and Zou, J.: Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering. Inverse Problems 23, 2357–2366 (2007).Google Scholar
  231. 231.
    Liu, H., and Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Problems 22, 515–524 (2006).Google Scholar
  232. 232.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart 1989.Google Scholar
  233. 233.
    Magnus, W.: Fragen der Eindeutigkeit und des Verhaltens im Unendlichen für Lösungen von Δu + k 2 u = 0. Abh. Math. Sem. Hamburg 16, 77–94 (1949).Google Scholar
  234. 234.
    Martensen, E.: Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen. Acta Math. 109, 75–135 (1963).Google Scholar
  235. 235.
    Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968.Google Scholar
  236. 236.
    Martin, P.: Multiple Scattering: Interaction of Time-harmonic Waves with N Obstacles. Cambridge University Press, Cambridge 2006.Google Scholar
  237. 237.
    Mautz, J.R., and Harrington, R.F.: A combinded-source solution for radiating and scattering from a perfectly conducting body. IEEE Trans. Ant. and Prop. AP-27, 445–454 (1979).Google Scholar
  238. 238.
    McLaughlin, J., and Polyakov, P.: On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Diff. Equations 107, 351–382 (1994).Google Scholar
  239. 239.
    McLaughlin, J., Polyakov, P. and Sacks, P.: Reconstruction of a spherically symmetric speed of sound. SIAM.J. Appl. Math. 54, 1203–1223 (1994).Google Scholar
  240. 240.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.Google Scholar
  241. 241.
    Melrose, R.B.: Geometric Scattering Theory. Cambridge University Press, Cambridge 1995.Google Scholar
  242. 242.
    Mikhlin, S.G.: Mathematical Physics, an Advanced Course. North-Holland, Amsterdam 1970.Google Scholar
  243. 243.
    Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).Google Scholar
  244. 244.
    Mönch, L.: On the inverse acoustic scattering problem from an open arc: the sound-hard case. Inverse Problems 13, 1379–1392 (1997).Google Scholar
  245. 245.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford, 2003.Google Scholar
  246. 246.
    Moré, J.J.: The Levenberg–Marquardt algorithm, implementatiion and theory. In: Numerical analysis (Watson, ed). Springer Lecture Notes in Mathematics 630, Berlin, 105–116 (1977).Google Scholar
  247. 247.
    Morozov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Doklady 7, 414–417 (1966) (English translation).Google Scholar
  248. 248.
    Morozov, V.A.: Choice of parameter for the solution of functional equations by the regularization method. Soviet Math. Doklady 8, 1000–1003 (1967) (English translation).Google Scholar
  249. 249.
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, Berlin 1984.Google Scholar
  250. 250.
    Morrey, C.M.: Multiple Integrals in the Calculus of Variations. Springer, Berlin 1966.Google Scholar
  251. 251.
    Morse, P.M., and Ingard, K.U.: Linear acoustic theory. In: Encyclopedia of Physics (Flügge, ed). Springer, Berlin 1–128 (1961).Google Scholar
  252. 252.
    Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46).Google Scholar
  253. 253.
    Müller, C.: Über die ganzen Lösungen der Wellengleichung. Math. Annalen 124, 235–264 (1952).Google Scholar
  254. 254.
    Müller, C.: Randwertprobleme der Theorie elektromagnetischer Schwingungen. Math. Z. 56, 261–270 (1952).Google Scholar
  255. 255.
    Müller, C: On the behavior of solutions of the differential equation Δu = F(x, u) in the neighborhood of a point. Comm. Pure Appl. Math. 7, 505–515 (1954).Google Scholar
  256. 256.
    Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin 1969.Google Scholar
  257. 257.
    Nachman, A.: Reconstructions from boundary measurements. Annals of Math. 128, 531–576 (1988).Google Scholar
  258. 258.
    Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart and Wiley, New York 1986.Google Scholar
  259. 259.
    Natterer, F., and Wübbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Problems 11, 1225–1232 (1995).Google Scholar
  260. 260.
    Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.Google Scholar
  261. 261.
    Newton, R.G.: Scattering Theory of Waves and Particles. Springer, Berlin 1982.Google Scholar
  262. 262.
    Newton, R.G.: Inverse Schrödinger Scattering in Three Dimensions. Springer, Berlin 1989.Google Scholar
  263. 263.
    Novikov, R.: Multidimensional inverse spectral problems for the equation − Δψ + (v(x) − Eu(x)) ψ = 0. Translations in Func. Anal. and its Appl. 22, 263–272 (1988).Google Scholar
  264. 264.
    Ola, P., Päivärinta, L., and Somersalo, E.: An inverse boundary value problem in electrodynamics. Duke Math. Jour. 70, 617–653 (1993).Google Scholar
  265. 265.
    Ola, P., and Somersalo, E.: Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math. 56, 1129–1145 (1996).Google Scholar
  266. 266.
    Olver, F.W.J: Asymptotics and Special Functions. Academic Press, New York 1974.Google Scholar
  267. 267.
    Päivärinta, L., and Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–758 (2008).Google Scholar
  268. 268.
    Panich, O.I.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Usp. Mat. Nauk 20A, 221–226 (1965) (in Russian).Google Scholar
  269. 269.
    Pieper, M.: Spektralrandintegralmethoden zur Maxwell-Gleichung. Dissertation, Göttingen 2007.Google Scholar
  270. 270.
    Pieper, M.: Nonlinear integral equations for an inverse electromagnetic scattering problem. Journal of Physics: Conference Series 124, 012040 (2008).Google Scholar
  271. 271.
    Pieper, M.: Vector hyperinterpolation on the sphere. J. Approx. Theory 156, 173–186 (2009).Google Scholar
  272. 272.
    Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin 1984.Google Scholar
  273. 273.
    Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).Google Scholar
  274. 274.
    Potthast, R.: Fréchet Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Maxwellgleichungen. Dissertation, Göttingen 1994.Google Scholar
  275. 275.
    Potthast, R.: Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. Jour. on Inverse and Ill-posed Problems 4, 67–84 (1996).Google Scholar
  276. 276.
    Potthast, R.: Domain derivatives in electromagnetic scattering. Math. Meth. in the Appl. Sci. 19, 1157–1175 (1996).Google Scholar
  277. 277.
    Potthast, R.: A fast new method to solve inverse scattering problems. Inverse Problems 12, 731–742 (1996).Google Scholar
  278. 278.
    Potthast, R.: A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math 61, 119–140 (1998).Google Scholar
  279. 279.
    Potthast, R.: Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114, 247–274 (2000).Google Scholar
  280. 280.
    Potthast, R.: On the convergence of a new Newton-type method in inverse scattering. Inverse Problems 17, 1419–1434 (2001).Google Scholar
  281. 281.
    Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London 2001.Google Scholar
  282. 282.
    Potthast, R.: Sampling and probe methods – an algorithmical view. Computing 75, 215–235 (2005).Google Scholar
  283. 283.
    Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Problems 22, R1–R47 (2006).Google Scholar
  284. 284.
    Potthast, R. and Schulz, J.: A multiwave range test for obstacle reconstructions with unknown physical properties. J. Comput. Appl. Math. 205, 53–71 (2007).Google Scholar
  285. 285.
    Protter, M.H.: Unique continuation for elliptic equations. Trans. Amer. Math. Soc. 95, 81–90, (1960).Google Scholar
  286. 286.
    Protter, M.H., and Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs 1967.Google Scholar
  287. 287.
    Ramm, A.G.: Scattering by Obstacles. D. Reidel Publishing Company, Dordrecht 1986.Google Scholar
  288. 288.
    Ramm, A.G.: On completeness of the products of harmonic functions. Proc. Amer. Math. Soc. 98, 253–256 (1986).Google Scholar
  289. 289.
    Ramm, A.G.: Recovery of the potential from fixed energy scattering data. Inverse Problems 4, 877–886 (1988).Google Scholar
  290. 290.
    Ramm, A.G.: Symmetry properties of scattering amplitudes and applications to inverse problems. J. Math. Anal. Appl. 156, 333–340 (1991).Google Scholar
  291. 291.
    Ramm, A.G.: Multidimensional Inverse Scattering Problems. Longman–Wiley, New York 1992.Google Scholar
  292. 292.
    Reed, M., and Simon, B.: Scattering Theory. Academic Press, New York 1979.Google Scholar
  293. 293.
    Rellich, F.: Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53, 57–65 (1943).Google Scholar
  294. 294.
    Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.Google Scholar
  295. 295.
    Rjasanow, S., and Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin 2007.Google Scholar
  296. 296.
    Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Ant. Prop. AP-29, 232–238 (1981).Google Scholar
  297. 297.
    Ruland, C.: Ein Verfahren zur Lösung von (Δ + k 2)u = 0 in Aussengebieten mit Ecken. Applicable Analysis 7, 69–79 (1978).Google Scholar
  298. 298.
    Rynne, B.P., and Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991).Google Scholar
  299. 299.
    Saranen, J., and Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer, Berlin 2002.Google Scholar
  300. 300.
    Sauter, S., and Schwab, C.: Boundary Element Methods. Springer, Berlin 2011.Google Scholar
  301. 301.
    Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974).Google Scholar
  302. 302.
    Schechter, M.: Principles of Functional Analysis. Academic Press, New York 1971.Google Scholar
  303. 303.
    Schormann, C.: Analytische und numerische Untersuchungen bei inversen Transmissionsproblemen zur zeitharmonischen Wellengleichung. Dissertation, Göttingen 2000.Google Scholar
  304. 304.
    Serranho, P.: A hybrid method for inverse scattering for shape and impedance. Inverse Problems 22, 663–680 (2006).Google Scholar
  305. 305.
    Serranho, P.: A hybrid method for sound-soft obstacles in 3D. Inverse Problems and Imaging 1, 691–712 (2007).Google Scholar
  306. 306.
    Silver, S.: Microwave Antenna Theory and Design. M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York 1949.Google Scholar
  307. 307.
    Sloan, I. H., and Womersley, R. S.: Constructive approximations on the sphere. J. Approx. Theory 103, 91–118 (2000).Google Scholar
  308. 308.
    Sommerfeld, A.: Die Greensche Funktion der Schwingungsgleichung. Jber. Deutsch. Math. Verein. 21, 309–353 (1912).Google Scholar
  309. 309.
    Stefanov, P., and Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Amer. Math. Soc. 132, 1351–1354 (2003).Google Scholar
  310. 310.
    Stratton, J.A., and Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939).Google Scholar
  311. 311.
    Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Problems 27, 015009 (2011).Google Scholar
  312. 312.
    Sun, Z., and Uhlmann, G.: An inverse boundary value problem for Maxwell’s equations. Arch. Rational. Mech. Anal. 119, 71–93 (1992).Google Scholar
  313. 313.
    Sylvester, J. and Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125, 153–169 (1987).Google Scholar
  314. 314.
    Tikhonov, A.N.: On the solution of incorrectly formulated problems and the regularization method. Soviet Math. Doklady 4, 1035–1038 (1963) (English translation).Google Scholar
  315. 315.
    Tikhonov, A.N.: Regularization of incorrectly posed problems. Soviet Math. Doklady 4, 1624–1627 (1963) (English translation).Google Scholar
  316. 316.
    Tikhonov, A.N., and Arsenin, V.Y.: Solutions of Ill-posed Problems. Winston and Sons, Washington 1977.Google Scholar
  317. 317.
    Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York 1975.Google Scholar
  318. 318.
    Vainikko, G.: Fast solvers of the Lippmann–Schwinger equation In: Direct and Inverse Problems of Mathematical Physics (Gilbert, Kajiwara and Xu, eds). Kluwer, Dordrecht (2000).Google Scholar
  319. 319.
    van Bladel, J.: Electromagnetic Fields. Hemisphere Publishing Company, Washington 1985.Google Scholar
  320. 320.
    van den Berg, R. and Kleinman, R.: A contrast source inversion method. Inverse Problems 13, 1607–1620 (1997).Google Scholar
  321. 321.
    van den Berg, R. and Kleinman, R.: Gradient methods in inverse acoustic and electromagnetic scattering. In: Large-Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design (Biegler et al, eds.) The IMA Volumes in Mathematics and its Applications 92, Springer, Berlin 173–194 (1977).Google Scholar
  322. 322.
    Vekua, I.N.: Metaharmonic functions. Trudy Tbilisskogo matematichesgo Instituta 12, 105–174 (1943).Google Scholar
  323. 323.
    Vögeler, M.: Reconstruction of the three-dimensional refractive index in electromagnetic scattering using a propagation-backpropagation method. Inverse Problems 19, 739–753 (2003).Google Scholar
  324. 324.
    Wang, Y., Yagola, A.G., and Yang, C.: Optimization and Regularization for Computational Inverse Problems and Applications. Springer, Berlin 2011.Google Scholar
  325. 325.
    Weck, N.: Klassische Lösungen sind auch schwache Lösungen. Arch. Math. 20, 628–637 (1969).Google Scholar
  326. 326.
    Werner, P.: Zur mathematischen Theorie akustischer Wellenfelder. Arch. Rational Mech. Anal. 6, 231–260 (1961).Google Scholar
  327. 327.
    Werner, P.: Randwertprobleme der mathematischen Akustik. Arch. Rational Mech. Anal. 10, 29–66 (1962).Google Scholar
  328. 328.
    Werner, P. : On the exterior boundary value problem of perfect reflection for stationary electromagnetic wave fields. J. Math. Anal. Appl. 7, 348–396 (1963).Google Scholar
  329. 329.
    Werner, P.: Low frequency asymptotics for the reduced wave equation in two-dimensional exterior spaces. Math. Meth. in the Appl. Sc. 8, 134–156 (1986).Google Scholar
  330. 330.
    Weston, V.H., and Boerner, W.M.: An inverse scattering technique for electromagnetic bistatic scattering. Canadian J. Physics 47, 1177–1184 (1969).Google Scholar
  331. 331.
    Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).Google Scholar
  332. 332.
    Wienert, L.: Die numerische Approximation von Randintegraloperatoren für die Helmholtzgleichung im \({\mathrm{I\!R}}^{3}\). Dissertation, Göttingen 1990.Google Scholar
  333. 333.
    Wilcox, C.H.: A generalization of theorems of Rellich and Atkinson. Proc. Amer. Math. Soc. 7, 271–276 (1956).Google Scholar
  334. 334.
    Wilcox, C.H.: An expansion theorem for electromagnetic fields. Comm. Pure Appl. Math. 9, 115–134 (1956).Google Scholar
  335. 335.
    Wilcox, C.H.: Scattering Theory for the d’Alembert Equation in Exterior Domains. Springer Lecture Notes in Mathematics 442, Berlin 1975.Google Scholar
  336. 336.
    Wloka, J.: Partial Differential Equations. University Press, Cambridge 1987.Google Scholar
  337. 337.
    Zinn, A.: On an optimisation method for the full- and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5, 239–253 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.Department Mathematical ScienceUniversity of DelawareNewarkUSA
  2. 2.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations