Skip to main content

Querying Moving Objects Detected by Sensor Networks

  • Chapter
  • First Online:
Querying Moving Objects Detected by Sensor Networks

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 620 Accesses

Abstract

Many sensor-network installations (SN) observe moving objects. For instance, scientists observe animal movement [14, 37, 43], or authorities monitor soldiers, pedestrians or vehicles [24, 34, 35]. In such applications, users are interested in object movements, i.e., the queries have spatio-temporal semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entities represented by a single point in space are typically called point by publications on this subject. We refer to such an entity as object to clearly distinguish it from a point which is an element of space.

  2. 2.

    To avoid clutter in the figures, we refer to nodes in figures without Subscript indices, i.e., nodes \({\mathcal{S}}_{1},{\mathcal{S}}_{2},\ldots \) are \(\text{ S1},\text{ S2},\ldots \) in the figures.

  3. 3.

    The difference between squares and circles is irrelevant here; we explain it in Section 8.4.

  4. 4.

    To prove \(A \Rightarrow B\) by contradiction, it is sufficient to prove \(\overline{\mbox{ B}} \Rightarrow \overline{\mbox{ A}}\).

  5. 5.

    We have chosen right-open intervals here to be in line with the definition of predicate sequences and the concatenation operator ⊳ (cf. Definition 4). This does not cause any problems since the temporal resolution of any detection mechanism is limited in any case.

References

  1. Abadi, D.J., et al.: REED: Robust, efficient Filtering and Event Detection in Sensor Networks. In: VLDB (2005)

    Google Scholar 

  2. Advantaca, Inc.: TWR-ISM-002-I Radar: Hardware User’s Manual (2002)

    Google Scholar 

  3. Ahmed, N., et al.: The holes problem in wireless sensor networks: a survey. SIGMOBILE Mob. Comput. Commun. Rev. (2005)

    Google Scholar 

  4. de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in network databases. In: GIS ’05 (2005)

    Google Scholar 

  5. Arora, A., et al.: A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks (2004)

    Google Scholar 

  6. Bestehorn, M., et al.: The Karlsruhe Sensor Networking Project (KSN) (2007). URL http://www.ipd.kit.edu/KSN

  7. Bestehorn, M., et al.: Deriving Spatio-temporal Query Results in Sensor Networks. In: SSDBM (2010)

    Google Scholar 

  8. Bestehorn, M., et al.: Energy-efficient processing of spatio-temporal queries in wireless sensor networks. In: ACM SIGSPATIAL GIS (2010)

    Google Scholar 

  9. Bonnet, P., et al.: Querying the Physical World. Personal Communications, IEEE (2000)

    Google Scholar 

  10. Bonnet, P., et al.: Towards sensor database systems. In: MDM ’01 (2001)

    Google Scholar 

  11. Braunling, R., et al.: Acoustic Target Detection, Tracking, Classification, and Location in a Multiple-Target Environment. In: SPIE (1997)

    Google Scholar 

  12. Buettner, M., et al.: X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In: SenSys ’06 (2006)

    Google Scholar 

  13. Cao, H., et al.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15 (2006)

    Google Scholar 

  14. Cerpa, A., et al.: Habitat monitoring: Application driver for wireless communications technology. SIGCOMM CCR (2001)

    Google Scholar 

  15. Chu, D., et al.: Approximate data collection in sensor networks using probabilistic models. In: ICDE ’06 (2006)

    Google Scholar 

  16. Ding, J., et al.: Signal Processing of Sensor Node Data for Vehicle Detection. In: IEEE ITSC (2004)

    Google Scholar 

  17. Dutta, P.K., et al.: Towards radar-enabled sensor networks. In: IPSN ’06 (2006)

    Google Scholar 

  18. Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. IJGIS (1991)

    Google Scholar 

  19. Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE TKDE (2002)

    Google Scholar 

  20. Fonseca, R., et al.: The collection tree protocol (ctp) (2007). URL http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

  21. Gaal, S.: Point set topology. Academic Press (1964)

    Google Scholar 

  22. Gamage, C., et al.: Security for the mythical air-dropped sensor network. In: ISCC (2006)

    Google Scholar 

  23. Gehrke, J., Madden, S.: Query processing in sensor networks. Pervasive Computing, IEEE (2004)

    Google Scholar 

  24. Grilo, A., et al.: A wireless sensor network architecture for homeland security application. In: ADHOC-NOW (2009)

    Google Scholar 

  25. Güting, R.H., et al.: A Foundation for Representing and Querying Moving Objects. ACM TODS (2000)

    Google Scholar 

  26. Güting, R.H., et al.: Modeling and querying moving objects in networks. VLDB J. (2006)

    Google Scholar 

  27. He, T., et al.: Energy-efficient surveillance system using wireless sensor networks. In: MobiSys ’04 (2004)

    Google Scholar 

  28. He, T., et al.: Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2 (2006)

    Google Scholar 

  29. Hergenröder, A., Wilke, J., Meier, D.: Distributed Energy Measurements in WSN Testbeds with a Sensor Node Management Device (SNMD) (2010)

    Google Scholar 

  30. Hill, J., et al.: System architecture directions for networked sensors. SIGPLAN Not. 35(11) (2000)

    Google Scholar 

  31. Klues, K., et al.: A component-based architecture for power-efficient media access control in wireless sensor networks. In: SenSys ’07 (2007)

    Google Scholar 

  32. Knuth, D.E., et al.: Fast Pattern Matching in Strings. SIAM Journal on Computing (1977)

    Google Scholar 

  33. Koenig, W., et al.: Detectability, Philopatry, and the Distribution of Dispersal Distances in Vertebrates. Trends in Ecology & Evolution (1996)

    Google Scholar 

  34. Kung, H., Vlah, D.: Efficient location tracking using sensor networks. IEEE WCNC (2003)

    Google Scholar 

  35. Langendorfer, P., et al.: A Wireless Sensor Network Reliable Architecture for Intrusion Detection. In: NGI (2008)

    Google Scholar 

  36. Li, D., et al.: Detection, Classification, and Tracking of Targets. Signal Processing Magazine, IEEE (2002)

    Google Scholar 

  37. Liu, N.H., et al.: Long-term animal observation by wireless sensor networks with sound recognition. In: WASA ’09 (2009)

    Google Scholar 

  38. Liu, T., et al.: Implementing Software on Resource-Constrained Mobile Sensors: Experiences with Impala and ZebraNet. In: MobiSys ’04 (2004)

    Google Scholar 

  39. Madden, S., et al.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS OSDI (2002)

    Google Scholar 

  40. Madden, S., et al.: The design of an acquisitional query processor for sensor networks. In: SIGMOD ’03 (2003)

    Google Scholar 

  41. Madden, S., et al.: TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM TODS (2005)

    Google Scholar 

  42. Madden, S.R.: The design and evaluation of a query processing architecture for sensor networks. Ph.D. thesis, University of California at Berkeley, Berkeley, CA, USA (2003). Chair-Franklin, Michael J.

    Google Scholar 

  43. Mainwaring, A., et al.: Wireless sensor networks for habitat monitoring. In: WSNA (2002)

    Google Scholar 

  44. Metsaranta, J.M.: Assessing Factors Influencing the Space Use of a Woodland Caribou Rangifer Tarandus Caribou Population using an Individual-Based Model. Wildlife Biology (2008)

    Google Scholar 

  45. Perkins, C.E., et al.: Internet Connectivity for Ad Hoc Mobile Networks (2002)

    Google Scholar 

  46. Polastre, J., et al.: Versatile low power media access for wireless sensor networks. In: SenSys ’04 (2004)

    Google Scholar 

  47. Rettie, J.W., Messier, F.: Hierarchical Habitat Selection by Woodland Caribou: Its Relationship to Limiting Factors. Ecography (2000)

    Google Scholar 

  48. Shrivastava, N., et al.: Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In: SenSys ’06 (2006)

    Google Scholar 

  49. Succi, G.P., et al.: Acoustic target tracking and target identification: recent results. Unattended Ground Sensor Technologies and Applications (SPIE) (1999)

    Google Scholar 

  50. SUN Microsystems Inc.: Small Programmable Object Technology (SPOT) (2009)

    Google Scholar 

  51. Tilove, R.B.: Set Membership Classification: A Unified Approach to Geometric Intersection Problems. IEEE TC (1980)

    Google Scholar 

  52. Trajcevski, G., et al.: The geometry of uncertainty in moving objects databases. In: EDBT (2002)

    Google Scholar 

  53. Trajcevski, G., et al.: Managing uncertainty in moving objects databases. ACM TODS (2004)

    Google Scholar 

  54. Wolfson, O., et al.: Moving objects databases: Issues and solutions. SSDBM (1998)

    Google Scholar 

  55. XBow Technology Inc.: Wireless sensor networks (2009)

    Google Scholar 

  56. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Rec. (2002)

    Google Scholar 

  57. Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in sensor networks. INFOCOM 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Bestehorn, M. (2013). Querying Moving Objects Detected by Sensor Networks. In: Querying Moving Objects Detected by Sensor Networks. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4927-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4927-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4926-3

  • Online ISBN: 978-1-4614-4927-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics