Breeding and Biotechnology of Jatropha curcas

  • Daniela de Argollo Marques
  • Walter José Siqueira
  • Carlos Augusto Colombo
  • Roseli Aparecida Ferrari


The growing demand for renewable energy sources will increase the demand for oilseeds in Brazil and worldwide. This demand will only be supplied if plant varieties with exceptional agronomic and chemical traits are developed. This process can be accelerated by application of biotechnology and molecular biology techniques, as we have done in the case of Jatropha curcas, a perennial oilseed. We have used two strategies: (1) Exploitation of pre-existing variability in the germplasm of J. curcas evaluated through morphological, molecular and chemical markers (such as fatty acid and phorbol esters content). We also investigated self-fertilization with selected genotypes to analyze the effects of inbreeding, particularly with regard to the production of non-toxic, smaller, male-sterile and gynoic plants; and (2) Increase the genetic variability through interspecific hybridization and biotechnology. Despite the post-zygotic incompatibility encountered in most interspecific crosses, the use of artificial hybridization coupled with tissue culture techniques, such as in vitro embryo rescue and subsequent multiplication via somatic embryogenesis has yielded unprecedented results in the form of rare hybrids between J. curcas and other species of this genus. So far, we have obtained more than 80 F1 hybrids and 140 BC1 × F1 backcross progenies. Evaluation of these hybrids and the continuation of this line of research will greatly expand the germplasm bank of Instituto Agronômico de Capinas (IAC) and should contribute significantly to rapid production and release of new improved cultivars. In addition to their application in assessing genetic variability, molecular markers were useful to confirm F1 hybrids and BC1 generations by excluding the possibility of apomixis and to select suitable plants for genetic breeding.


Somatic Embryogenesis Pollen Tube Phorbol Ester Selective Breeding Interspecific Cross 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amplified fragment length polymorphism


Combinatorial tubulin-based polymorphism


Instituto Agronômico, Campinas, São Paulo, Brasil (Agronomic Institute), São Paulo, Brazil


Inter-simple sequence repeat


Instituto de Tecnologia dos Alimentos (Food Technology Institute) São Paulo Brazil


Polymerase chain reaction


Random amplified polymorphic DNA


Real-time reverse transcription PCR


Simple primer amplification reactions


Simple sequence repeat



The authors thank Petrobras for financial support and fellowships provided to students and trainees at Instituto Agronômico de Campinas (IAC) and Instituto de Tecnologia dos Alimentos (ITAL).


  1. Arruda FP, Beltrão NEM, Andrade AP, Pereira WE, Severino LS (2004) Cultivo de pinhão manso (Jatropha curcas L.) como alternativa para o semi-árido nordestino. Revista Brasileira de Oleaginosas e Fibrosas 8(1):789–799, PortugueseGoogle Scholar
  2. Bardini M, Lee D, Donini P, Mariani A, Gianì S, Toschi M et al (2004) Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 47:281–291CrossRefPubMedGoogle Scholar
  3. Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  4. Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214CrossRefGoogle Scholar
  5. Berry EW (1929) An eogene tropical forest in the Peruvian desert. Proc Natl Acad Sci USA 15:345–346CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460CrossRefGoogle Scholar
  7. Breviario D, Baird WV, Sangoi S, Hilu K, Blumetti P, Gianì S (2007) High polymorphism and resolution in targeted fingerprinting with combined beta-tubulin introns. Mol Breed 20:249–259CrossRefGoogle Scholar
  8. Bronzatti FL, Iarozinski Neto A. Matrizes energéticas no Brasil: Cenário 2010–2030. XXVIII Encontro Nacional de Engenharia de Produção. Rio de Janeiro, RJ, Brasil. 13–16 out. 2008, pp 1–15, PortugueseGoogle Scholar
  9. Carels N (2009) Jatropha curcas: a review. In: Kader JC, Delseny M (eds) Adv in Bot Res, Elsevier, vol 50, pp 39–86Google Scholar
  10. Carqueijo AP, Lima P, Gonçalves GM, Nicomedes Junior J, Marques DA, Colombo CA (2010) Diversidade genética acessos de Jatropha por meio de caracterização molecular. Anais do I Congresso de Recursos Genéticos. Brasília, 8–11 Jun 2010, pp 289–90, PortugueseGoogle Scholar
  11. Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and kariotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  12. Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11(1):462. doi: 10.1186/1471-2164-11-462CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deore AC, Johnson TS (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep 2:7–11CrossRefGoogle Scholar
  14. Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  15. Dwimahyani I, Ishak (2004) Induced mutation on Jatropha (Jatropha curcas L.) for improvement of agronomic characters variability. Available from
  16. EPE- Empresa de Pesquisa Energética, Brasil. Balanço Energético Nacional. Rio de Janeiro: EPE, 2012. p 51, Available from CrossRefGoogle Scholar
  17. Ferrari RA, Casarini MB, Marques DA, Siqueira WJ (2009) Avaliação da composição química e de constituinte tóxico em acessos de pinhão-manso de diferentes origens. Braz J Food Technol 12(4):309–314, PortugueseCrossRefGoogle Scholar
  18. Franco MC, Scott MDS, Siqueira WJ, Marques DA (2010) Micropropagação de pinhão manso a partir de explantes foliares. Anais do Congresso Brasileiro de Recursos Genéticos. Braslia, 8–11 Jun 2010, pp 184–5, PortugueseGoogle Scholar
  19. Goel HL, Zarif MJ, Saluja V, Breen M, Garlick DS, Jiang Z et al. (2007) Down-regulation of β1 integrin in vivo delays prostate cancer progression and increases radiosensitivity. 2007 IMPaCT meeting, AtlantaGoogle Scholar
  20. Gomes KA, Almeida TC, Gesteira AS, Lobo IP, Guimaraes ACR, Miranda AB et al (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 3:29–56PubMedPubMedCentralGoogle Scholar
  21. Grativol C, Lira-Medeiros CF, Hermely AS, Ferreira PCG (2010) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep 38:4245–4256CrossRefPubMedGoogle Scholar
  22. Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK et al (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7:4230–4243Google Scholar
  23. Heller J (1996) Physic nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research/ International Plant Genetic Resources Institute, Gatersleben/Roma. Available from
  24. Henning RK (2009) The Jatropha system. An integrated approach of rural development, Germany. Available from JatrophaBook-2009.pdf. Accessed 16 Dec 2009
  25. Ikbal Boora KS, Dhillon RS (2010) Evaluation of genetic diversity of Jatropha curcas L. using RAPD markers. Indian J Biotechnol 9:50–57Google Scholar
  26. Ishizada H (2008) Interspecific hybridization by embryo rescue in the genus Cyclamen. Plant Biotechnol 25:511–519CrossRefGoogle Scholar
  27. Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn an important biofuel plant. Plant Biotechnol Rep 1:135–140CrossRefGoogle Scholar
  28. Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Netherlands. Available from Cited 14 Mar 2008
  29. Juhász ACP, Pimenta S, Soares BO (2009) Floral biology and artificial polinization in physic nut in the north of Minas Gerais state, Brazil. Pesq Agropec Bras 44:1073–1077CrossRefGoogle Scholar
  30. Kaushik N, Kumar K, Kumar S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502CrossRefGoogle Scholar
  31. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10CrossRefGoogle Scholar
  32. Li MR, Li HQ, Wu GJ (2006) Study on factors influencing Agrobacterium-mediated transformation of Jatropha curcas. Fen Zi Xi Bao ShengWu Xue Bao 39:83–89Google Scholar
  33. Li MR, Li HQ, Jiang HW, Pan XP, Wu JG (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult 92:173–181CrossRefGoogle Scholar
  34. Luo CW, Li K, Chen Y, Sun YY, Yang WY (2007a) Pollen viability, stigma receptivity and reproductive features of J. curcas L. (Euphorbiacea). J Northwest Plant 27:1994–2001Google Scholar
  35. Luo CW, Li K, Chen Y, Sun YY (2007b) Floral display and breeding system of Jatropha curcas L. Forum Stud China 9(2):114–119CrossRefGoogle Scholar
  36. Makkar HPS, Kumar V, Oyeleyea OO, Akinleyea AO, Angulo-Escalante MA, Becker K (2011) Jatropha platyphylla, a new non-toxic Jatropha species: physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chem 125:63–71CrossRefGoogle Scholar
  37. Marques DA, Ferrari RA (2008) O papel das novas biotecnologias no melhoramento genético do pinhão-manso. Biológico 70(2):65–67. PortugueseGoogle Scholar
  38. Marques DA, Franco MC, Siqueira WJ (2008) Organogênese in vitro a partir de segmentos de hipocótilo em Pinhão manso (Jatropha curcas). Livro de Trabalhos completos. Anais do 5˚ Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel-, Lavras 7–11 Jul 2008, pp 1804–1810, PortugueseGoogle Scholar
  39. Mittelbach M, Remschmidt C (2004) Biodiesel: the comprehensive handbook. Boersedruck Ges MBH, ViennaGoogle Scholar
  40. Moreira MF, Ventrella MC, Rufino ER, Siqueira WJ, Scott MDS, Marques DA et al (2011b) Genetic incompatibility between Jatropha curcas and J. integerrima, J. multifida, J. podagrica. Congreso Internacional sobre Biocombustibles. World Trade Center, México/Boca Del Rio, 12–14 Oct 2011, p 112Google Scholar
  41. Moreira MF, Rulfino ER, Siqueira WJ, Scott MDS, Franco MC, Marques DA et al (2011a) Embryo rescue of Jatropha curcas crossing with J. integerrima, J. multifida and J. podagrica. Congreso Internacional sobre Biocombustibles. World Trade Center, México/Boca Del Rio, 12–14 Oct 2011, p 111Google Scholar
  42. Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237CrossRefGoogle Scholar
  43. Olapeju OA, Kayode A, Olusegun E, James BG (2007) Antibacterial diterpenoids from Jatropha podagrica Hook. Phytochemistry 68:2420–2425CrossRefGoogle Scholar
  44. Pamidiamarri DVNS, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefGoogle Scholar
  45. Pandey RK, Datta SK (1995) Gamma ray induced cotyledonary variabilities in Jatropha curcas L. J Nucl Agric Biol 24:62–66Google Scholar
  46. Parthiban KT, Kumar RS, Thiyagarajan P, Subbulakshmi V, Vennila S, Rao MG (2009) Hybrid progenies in Jatropha – a new development. Curr Sci 96:815–823Google Scholar
  47. Popluechai S, Breviario D, Mulpuri S, Makkar H, Raorane M, Reddy A et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. Nat Preced
  48. Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis & Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218CrossRefGoogle Scholar
  49. Pranesh KJ, Rao MRG, Sowmya HC, Balakrishna Gowda DL, Savithramma NL (2010) Studies on floral display and mode of reproduction in Jatropha (Jatropha curcas L.). Electron J Plant Breed 1:832–838Google Scholar
  50. Punia MS (2007) Current status of research and development on jatropha (Jatropha curcas) for sustainable biofuel production in India. In: USDA global conference on agricultural biofuels: research and economics. Minneopolis, 20–22 Aug 2007Google Scholar
  51. Rajore S, Batra A (2005) Efficient plant regeneration via shoot tip explant in Jatropha curcas L. J Plant Biochem Biotech 14:73–75CrossRefGoogle Scholar
  52. Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83(11):1395–1398Google Scholar
  53. Ram SG, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2007) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol. doi: 10.1007/s10722-007-9285-7Google Scholar
  54. Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two simple-primer amplification (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  55. Rao GR, Korwar GR, Shanker AK, Ramakrishna YS (2008) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas L. accessions. Trees Struct Func 22:697–709CrossRefGoogle Scholar
  56. Reddy KRK, Ramaswamy N, Bahadur B (1987) Cross in compatibility between Ricinus and Jatropha. Plant Cell Incomp Newslett 17:60–68Google Scholar
  57. Rodrigues R (2005) Plano Nacional de Agroenergia Pecuária e Abastecimento. Brasília 1(1):120, PortugueseGoogle Scholar
  58. Rufino ER, Siqueira WJ, Menezes G, Nicomedes Junior J, Marques DA (2010) Estudos sobre a ocorrência de apomixia em plantas de pinhão manso (Jatropha curcas) do banco de geroplasma do IAC. Anais do I Congresso Brasileiro de Recursos Genéticos. Brazil, Brasília CD;8–11 Jun 2010, pp 269–270, PortugueseGoogle Scholar
  59. Rufino ER, Siqueira WJ, Franco MC, Scott MDS, Marques DA, Colombo CA et al (2011a) Morphological evaluation of interspecific hybrids BC1F1 in Jatropha curcas. Congreso Internacinal sobre Biocombustibles. World Trade Center, México/Boca Del Rio,12–14 Oct 2011. p 110Google Scholar
  60. Rufino ER, Siqueira WJ, Franco MC, Scott MDS, Marques DA, Colombo CA et al (2011b) Interspecific hybrids in Jatropha. In: Congreso Internacinal sobre Biocombustible. World Trade Center, México/Boca Del Rio, 12–14 Oct 2011, p 109Google Scholar
  61. Sardana J, Batra A, Ali DJ (2002) An expeditious method for regeneration of somatic embryos in Jatropha curcas L. Phytomorphology 50:239–242Google Scholar
  62. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2010) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 2010:1–12. doi:10.1093/dnares/dsq030Google Scholar
  63. Saturnino HM, Pacheco DD, Kakida J, Tominaga N, Gonçalves NP (2005) Produção de oleaginosas para o biodiesel. Informe Agropecuário 26(229):4–74, PortugueseGoogle Scholar
  64. Segeren MI, Söndahl MR, Siqueira WJ, Medina Filho HP, Nagai H, Lourenção AL (1993) Tomato breeding: 1. Embryo rescue of interspecific hybrids Between Lycopersicon esculentum Mill. and L. peruvianum (L.) MILL. Rev Bras Genet 16:367–380Google Scholar
  65. Sharma DR, Kaur R, Kumar K (1996) Embyo rescue: a review. Euphytica 89:325–337Google Scholar
  66. Sujatha M (2006) Genetic improvement of Jatropha curcas L. possibilities and prospects. Indian J Agrofor 8(2):58–65Google Scholar
  67. Sujatha M, Dhingra M (1993) Rapid plant regeneration from various explants of Jatropha integerrima. Plant Cell Tissue Organ Cult 35:293–296CrossRefGoogle Scholar
  68. Sujatha M. Genetic and Tissue Culture Studies in Castor (Ricinus communis L.) and Related Genera, Ph.D. Thesis, Osmania University, Hyderabad, India, 1996CrossRefGoogle Scholar
  69. Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of J. curcas L. Plant Cell Tissue Organ Cult 44:135–141CrossRefGoogle Scholar
  70. Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha through interspecific hybridization. Genet Resour Crop Evol 50:75–82CrossRefGoogle Scholar
  71. Sun Q, Li L, Li Y, Wu G, Ge X (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871CrossRefGoogle Scholar
  72. Sunita K, Kochar VK, Singh SP, Katiyar RS, Pushpangadan P (2005) Differential rooting and sprouting behaviour of two Jatropha species and associated physiological and biochemical, changes. Curr Sci 89:936–939Google Scholar
  73. Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. a biofuel plant. Plant Sci 176:505–513CrossRefPubMedGoogle Scholar
  74. Thame ACM (2006) Biocombustíveis. Available fromívies.pdf, PortugueseGoogle Scholar
  75. Wani SP, Osman M, D’silva E, Sreedevi TK (2006) Improved livelihoods and environmental protection through biodiesel plantations in Asia. Asian Biotechnol Develop Rev 8:11–29Google Scholar
  76. Yotam L, Yaniv S, Haim B, Menachem S, Emile H (2000) Rare Jatropha multifida intoxication in two children. J Emerg Med 19:173–175CrossRefGoogle Scholar
  77. Zhang Y, Wang Y, Jiang L, Xu Y, Wang Y, Lu D et al (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39(10):787–794CrossRefPubMedGoogle Scholar
  78. Zhang F, Niu B, Wang Y, Chen F, Wang S, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaption to environmental stress. Plant Sci 174:510–518CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniela de Argollo Marques
    • 1
  • Walter José Siqueira
    • 1
  • Carlos Augusto Colombo
    • 1
  • Roseli Aparecida Ferrari
    • 2
  1. 1.Centro de Pesquisa e Desenvolvimento de Recursos Genéticos VegetaisInstituto Agronômico de Campinas (IAC)Campinas/São PauloBrazil
  2. 2.Centro de Ciência e Qualidade de AlimentosInstituto de Tecnologia dos Alimentos (ITAL)CampinasBrazil

Personalised recommendations