Advertisement

Karyology and Genomics of Jatropha: Current Status and Future Prospects

  • Muppala P. Reddy
  • Pamidimarri D. V. N. Sudheer
  • Shaik. G. Mastan
  • Hifzur Rahman
  • Nicolas Carels
  • Bir Bahadur
Chapter

Abstract

Global warming, population, environmental degradation and food production are serious concerns to the well being of mankind. Development of sustainable energy resources is an essential component to many of these problems. Bioenergy holds great promise to contribute significantly to reduce petroleum consumption and emission of green house gases. Biodiesel derived from the oil of Jatropha curcas seed is emerging as an alternative to fossil fuel, since it has the desirable physiochemical characteristics and performance even superior to conventional petroleum diesel. In addition, the plant is able to grow on marginal lands, which eliminates the “food versus fuel” dilemma. However, large scale cultivation of J. curcas remains the single most important issue that will ultimately decide of its success. Despite the availability of a vast germplasm with wide variability, not much progress has been made in developing varieties or hybrids for higher oil yield, better agricultural and economic features. Additional information about the karyology, genetic diversity and genomics is necessary to generate mapping populations, marker assisted selection and to develop superior genotypes. In this review, we discuss the state of the art of genetic improvement research for J. curcas.

Keywords

Amplify Fragment Length Polymorphism Amplify Fragment Length Polymorphism Analysis Sequence Characterize Amplify Region Marker Amplify Fragment Length Polymorphism Technique Meiotic Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Dr. P.K Ghosh, Director of the CSMCRI (CSIR, Bhavnagar, Gujarat), for allowing the access to the facilities of the institute, the colleagues for their help in executing some parts of the work included in this review and Prof K. Becker from Department of Aquaculture Systems and Animal Nutrition (University of Hohenheim, Stuttgart, Germany) for providing the samples of Mexican non-toxic and other exotic samples. N. Carels is grateful to CAPES/Fiocruz/CDTS for financial support.

References

  1. Aponte CH (1978) Estudio de Jatropha curcas L. como recurso biotico. Diploma thesis. University Veracruz, Xalapa-Enríquez, Veracruz, MexicoGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 3:208–218CrossRefGoogle Scholar
  3. Basha SD, Sujatha M (2007) Inter- and intra-population variability of J. curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 56:375–386CrossRefGoogle Scholar
  4. Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214CrossRefGoogle Scholar
  5. Basha SD, Francis G, Becker K, Makkar HPS, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823CrossRefGoogle Scholar
  6. Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009b) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823CrossRefGoogle Scholar
  7. Becker K, Makkar HPS (2008) Jatropha curcas: a potential source for tomorrow’s oil and biodiesel. Lipid Technol 20:104–107CrossRefGoogle Scholar
  8. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses – 807 new estimates. Ann Bot 86:859–909CrossRefGoogle Scholar
  9. Berchman HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721CrossRefGoogle Scholar
  10. Berry EW (1929) An eogene tropical forest in the Peruvian desert. Proc Natl Acad Sci USA 15(4):345–346CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460CrossRefGoogle Scholar
  12. Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Co-operatives, Kuala LumpurGoogle Scholar
  13. Caetano AG, Gresshoff PM (1997) DNA markers protocols applications and overviews. Wiley-Liss, New YorkGoogle Scholar
  14. Carels N (2005) The genome organization of angiosperms. In: Pandalai SG (ed) Recent research developments in plant science. Research Signpost, Trivandrum, pp 129–194Google Scholar
  15. Carels N (2009) Jatropha curcas: a review. Adv Bot Res 50:39–86CrossRefGoogle Scholar
  16. Carvalho RC, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  17. Costa GLG, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462–471CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crawford DJ, Haines DW, Cosmer MB, Wiens D, Lopez P (1994) Lactoris fernandeziana on the Juan Fernandez Islands allozyme uniformity and field observations. Conserv Biol 8:277–280CrossRefGoogle Scholar
  19. Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9(4):467–478CrossRefGoogle Scholar
  20. Dehgan B, Webster GL (1978) Three new species of Jatropha (Euphorbiaceae) from Western Mexico. Madron 25:30–39Google Scholar
  21. Elizabeth J, Essilman EJ, Crawford DJ, Brauner S, Stuessy TF, Anderson GJ et al (2000) RAPD marker diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae). Amer J Bot 87:591–596CrossRefGoogle Scholar
  22. Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Kumar RKG, Tangirala SJ (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fairless D (2007) Biofuel: the little shrub that could – maybe. Nature 449:652–655CrossRefPubMedGoogle Scholar
  24. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production and socioeconomic development in degraded areas in India; need, potential and prospective of Jatropha plantations. Nat Resour Forum 29:12–24CrossRefGoogle Scholar
  25. Francisco OJ, Crawford DJ, Santos-Guerra A, Carvalho J (1996) Isozymes differentiation in the endemic genus Argyranthemum (Asteraceae, Anthemideae) in the Macaronesian islands. Plant Syst Evol 202:137–152CrossRefGoogle Scholar
  26. Freitas ASIB (1906) A purgueira e o seu óleo. A Editora, Lisboa, 119 pp. Available from http://cryptomeria.afn.min-agricultura.pt/docbweb/psqbol.asp?fields=6
  27. Ganesh Ram S, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 5:803–809CrossRefGoogle Scholar
  28. Ghosh A, Chaudhary DR, Reddy MP, Rao SN, Chikara J, Pandya JB et al (2007) Prospects for Jatropha methyl ester (biodiesel) in India. Intl J Environ Stud 64:659–674CrossRefGoogle Scholar
  29. Gomes KA, Almeida TC, Gesteira AS, Lobo PL, Guimaraes ACR, de Miranda AB et al (2010) ESTs from seeds to assist selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 3:29–56PubMedPubMedCentralGoogle Scholar
  30. Gua K, Chiam H, Tiana D, Yin Z (2011) Molecular cloning and expression of heteromeric ACCase sub unit genes from Jatropha curcas. Plant Sci 80:642–649CrossRefGoogle Scholar
  31. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82CrossRefGoogle Scholar
  32. Gupta S, Srivastava M, Mishra PG, Naik PK, Chauhan RS, Tiwari SK et al (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7:4230–4243Google Scholar
  33. He W, Guo L, Wang L, Yang W, Tang L, Cheng F (2007) ISSR analysis of genetic diversity of Jatropha curcas L. Chin J Appl Environ Biol 13:466–470Google Scholar
  34. Heller J (1996) Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, Gatersleben/RomeGoogle Scholar
  35. IPCN (2009) Index to plant chromosome numbers. Available in http://mobot.mobot.org/W3T/Search/ipcn.html. Accessed on May 2009
  36. Jain N, Shasany AK, Sundaresan V, Rajkumar S, Darokar MP, Bagchi GD et al (2003) Molecular diversity in Phyllanthus amarus assessed through RAPD analysis. Curr Sci 85:1454-1458Google Scholar
  37. Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotech Rep 1:135–140CrossRefGoogle Scholar
  38. Kothari NM, Ninant CA, Kuriachan PI (1981) Chromosome number reports LXXI. Taxon 30:511–512Google Scholar
  39. Krishnappa DG, Reshme RV (1980) Chromosome number reports LXVIII. Taxon 29:536–537Google Scholar
  40. Kumar N, Reddy MP (2010) Plant regeneration through direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann Appl Biol 156:367–375CrossRefGoogle Scholar
  41. Kumar N, Vijay Anand KG, Sudheer PDVN, Sarkar T, Reddy MP, Kaul T et al (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32:41–47CrossRefGoogle Scholar
  42. Leela T, Wani SP, Kannan S, Naresh B, Hoisington DA, Devi P et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  43. Lesica P, Leary RF, Allendort FR, Bilderbecl DE (1998) Lack of genetic diversity within and among populations of an endangered plant, Hawellia aquatilis. Conserv Biol 2:275–282CrossRefGoogle Scholar
  44. Lowrey TK, Crawford DJ (1985) Allozyme divergence and evolution in Tetramolopium (Compositae: Astereae) on the Hawaiian Islands. Syst Bot 10:64–72CrossRefGoogle Scholar
  45. Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agri Food Chem 45:3152–3157CrossRefGoogle Scholar
  46. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215CrossRefGoogle Scholar
  47. Mandpe S, Kadlaskar S, Degen W, Keppeler S (2005) On road testing of advanced common rail diesel vehicles with biodiesel from the Jatropha curcas plant. Soc Automot Eng Inc 26:356–364Google Scholar
  48. Martin G, Mayeux A (1984) Réflexions sur les cultures oléagineuses énergétiques. II. – Le Pourghère (Jatropha curcas L.): Un carburant possible. Oléagineux 39:283–7Google Scholar
  49. Miller KI, Webster GL (1966) Chromosome numbers in the Euphorbiaceae. Brittonia 18:372–379CrossRefGoogle Scholar
  50. Modi MK, Reddy JR, Rao BV, Prasad RB (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98:1260–1264CrossRefPubMedGoogle Scholar
  51. Nair D, Maria TSW, Luiz ASD (2009) Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed Appl Biotechnol 9:386–389CrossRefGoogle Scholar
  52. Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606CrossRefPubMedPubMedCentralGoogle Scholar
  53. Navaneetham N, Sampathkumar R, Ayyangar KR (1983) Cytotaxonomical studies in Jatropha curcas L. Proc Indian Sci Cong Assoc 70:82Google Scholar
  54. Paramathma M, Parthiban KT, Neelakantan KS (2004) Jatropha curcas. Bharat press Mettupalayam, Tami Nadu, pp 1–45Google Scholar
  55. Parawira W (2010) Biodiesel production from Jatropha curcas: a review. Sci Res Essays 5: 1796–1808Google Scholar
  56. Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis & Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218CrossRefGoogle Scholar
  57. Puangpaka S, Thaya J (2003) Karyology of Jatropha (Euphorbiaceae) in Thailand. Thai Bull (Bot) 31:105–112Google Scholar
  58. Qin X, Lin F, Li Y, Gou C, Chen F (2011) Molecular analysis of afr1 expression profiles during development of physic nut (Jatropha curcas L.). Mol Biol Rep 38:1681–1686CrossRefPubMedGoogle Scholar
  59. Ram J, Kumar A, Bhatt J (2004) Plant diversity in six forest types of Uttaranchal, Central Himalaya, India. Curr Sci 86:975–978Google Scholar
  60. Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  61. Rianti P, Suryobroto B, Atmowidi T (2010) Diversity and effectiveness of insect pollinators of Jatropha curcas L. (Euphorbiaceae). Hayati J Biosci 17:38–42CrossRefGoogle Scholar
  62. Sarkar AK (1989) Cytological assessment of the family Euphorbiaceae III. Subtribe Jatropheae. Proc Indian Sci Cong Assoc 76:183Google Scholar
  63. Sasikala R, Paramathma M (2010) Chromosome studies in the genus Jatropha. Elec J Plant Breed 1:637–642Google Scholar
  64. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76CrossRefPubMedPubMedCentralGoogle Scholar
  65. Serra MCP (1950) O valor da purgueira na economia de Cabo Verde. Rev Ultramar 3:9–16Google Scholar
  66. Shen J, Jia X, Ni H, Sun P, Niu S, Chen X (2010) AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees 24:455–462CrossRefGoogle Scholar
  67. Singh A, Reddy MP, Chikara J, Singh S (2010) A simple regeneration protocol from stem explants of Jatropha curcas- a biodiesel plant. Ind Crops Prod 31:209–213CrossRefGoogle Scholar
  68. Soltis PS, Soltis DE, Tucker TL, Lang A (1992) Allozyme variability is absent in the narrow endemic Bensoniella oregona (Saifragacear). Conserv Biol 6:131–134CrossRefGoogle Scholar
  69. Soontornchainaksaeng P, Jenjittikul T (2003) Karyology of Jatropha (Euphorbiaceae) in Thailand. Thai Forest Bull (Bot) 31:105–112Google Scholar
  70. Sudheer DVNP (2008) Studies on molecular diversity of Jatropha and generation of molecular markers. Ph.D. thesis, Bhavnagar University, BhavnagarGoogle Scholar
  71. Sudheer DVNP, Pandya N, Reddy MP, Krishnan TR (2009a) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907CrossRefGoogle Scholar
  72. Sudheer PDVN, Balaji C, Reddy MP (2009b) Genetic diversity and phylogenetic analysis of genus Jatropha based on nrDNA ITS sequence. Mol Biol Rep 36:1929–1935CrossRefGoogle Scholar
  73. Sudheer PDVN, Singh S, Mastan SG, Patel J, Reddy MP (2009c) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefGoogle Scholar
  74. Sudheer DVNP, Mastan SG, Rahman H, Reddy MP (2010a) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257CrossRefGoogle Scholar
  75. Sudheer PDVN, Rahman H, Mastan SG, Reddy MP (2010b) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793CrossRefPubMedGoogle Scholar
  76. Sudheer PDVN, Mastan SG, Rahman H, Prakash CR, Sweta S, Reddy MP (2011) Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa. Mol Biol Rep 38:1383–1388CrossRefPubMedGoogle Scholar
  77. Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul 47:83–90CrossRefGoogle Scholar
  78. Sun QB, Li LF, Li Y, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871CrossRefGoogle Scholar
  79. Tatikonda L, Suhas PW, Seetha K, Naresh B, Thakur KS, David AH et al (2008) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  80. Tong L, Peng SM, Deng WY, Ma DW, Xu Y, Xiao M et al (2006) Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnol Lett 28:657–662CrossRefPubMedGoogle Scholar
  81. Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wilbur RL (1954) A synopsis of Jatropha, subsection Eucurcas, with the description of two new species from Mexico. J Elisha Mitc Sci Soc 70:92–101Google Scholar
  83. Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus induced gene silencing. Plant Biotechnol J 7:964–976CrossRefPubMedGoogle Scholar
  84. Ying Z, Yunxiao W, Luding J, Ying X, Yingchun W, Daihua L et al (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39:787–794CrossRefGoogle Scholar
  85. Zhang F, Niu B, Wang Y, Chen F, Wang S, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaption to environmental stress. Plant Sci 174:510–518CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muppala P. Reddy
    • 1
  • Pamidimarri D. V. N. Sudheer
    • 2
  • Shaik. G. Mastan
    • 3
  • Hifzur Rahman
    • 3
  • Nicolas Carels
    • 4
  • Bir Bahadur
    • 5
  1. 1.Center for Desert AgricultureKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  2. 2.School of BiotechnologyGuru Ghasidas Vishwavidyalya (A Central University) KoniBilaspurIndia
  3. 3.Discipline of Wasteland ResearchCentral Salt and Marine Chemicals Research Institute (CSIR)BhavnagarIndia
  4. 4.Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC)Laboratório de Genômica Funcional e BioinformáticaRio de JaneiroBrazil
  5. 5.Department of BotanyKakatiya UniversityWarangalIndia

Personalised recommendations