Skip to main content

Bilateral Matrix-Exponential Distributions

  • Conference paper
  • First Online:
Matrix-Analytic Methods in Stochastic Models

Abstract

In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. The distributions extend the class of bilateral phase-type distributions of Ahn and Ramaswami [Stoch. Models 21, 239–259 (2005)] and the class of multivariate matrix-exponential distributions of Bladt and Nielsen [Stoch. Models 26, 1–26 (2010)]. We prove a characterization theorem stating that a random variable has a bilateral multivariate distribution if and only if all linear combinations of the coordinates have a univariate bilateral matrix-exponential distribution. As an application we demonstrate that certain multivariate diffusions, which are governed by the underlying Markov jump process generating a phase-type distribution, have a bilateral matrix-exponential distribution at the time of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S., Ramaswami, V.: Bilateral phase-type distributions. Stoch. Models 21, 239–259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asmussen, S.: Phase-type representations in random walk and queueing problems. Ann. Probab. 20, 772–789 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    MATH  Google Scholar 

  4. Asmussen, S.: Terminal distributions of skipfree Markov additive processes with absorption. Technical Report 14, MaPhySto (2004)

    Google Scholar 

  5. Asmussen, S., Bladt, M.: Renewal theory and queueing algorithms for matrix-exponential distributions. In: Chakravarthy, S., Attahiru, S.A. (eds.) Matrix-Analytic Methods in Stochastic Models, CRC, Boca Raton, FL, CRC Press, pp. 313–341 (1996)

    Google Scholar 

  6. Assaf, D., Langberg, N.A., Savits, T.H., Shaked, M.: Multivariate phase-type distributions. Oper. Res. 32(3), 688–702 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bladt, M., Neuts, M. F.: Matrix-exponential distributions: calculus and interpretations via flows. Stoch. Models 19, 113–124 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bladt, M., Nielsen, B.F.: Multivariate matrix-exponential distributions. In: Bini, D., Meini, B., Ramaswami, V., Remiche, M.-A., Taylor, P. (eds.) Numerical Methods for Structured Markov Chains, Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 07461 (2008)

    Google Scholar 

  9. Bladt, M., Nielsen, B.F.: Multivariate matrix-exponential distributions. Stoch. Models 26, 1–26 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodrog, L., Hovarth, A., Telek, M.: Moment characterization of matrix-exponential and Markovian arrival processes. Ann. Oper. Res. 160, 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Q., Zhang, H.: On matrix-exponential distributions. Adv. Appl. Probab. 39, 271–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kulkarni, V.G.: A new class of multivariate phase-type distributions. Oper. Res. 37, 151–158 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Neuts, M.F.: Probability distributions of phase-type. In: Liber Amicorum Prof. Emeritus H. Florin, Department of mathematics, University of Louvain, Belgium pp. 173–206 (1975)

    Google Scholar 

  14. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models, vol. 2. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  15. Nielsen, B.F., Nielson, F., Nielson, H.R.: Model checking multivariate state rewards. QEST 17, 7–16 (2010)

    Google Scholar 

  16. Numata, Y., Kuriki, S.: On formulas for moments of the Wishart distributions as weighted generating functions of matchings. In: Discrete Mathematics and Theoretical Computer Science, San Francisco, USA, pp. 821–832 (2010)

    Google Scholar 

  17. Shanthikumar, J.G.: Bilateral phase type distributions. Naval Res. Log. Q. 32, 119–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van de Liefvoort, A.: The moment problem for continuous distributions. Technical Report, University of Missouri, Kansas City (1990)

    Google Scholar 

  19. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, 32–52 (1928)

    Google Scholar 

Download references

Acknowledgements

Luz Judith Rodriguez Esparza and Bo Friis Nielsen would like to thank the Villum Kann Rasmussen Foundation and the Danish Council for Strategic Research for their support through MTlab a VKR centre of excellence and the UNITE project under Grant 2140-08-0011. Mogens Bladt acknowledges the support from the Mexican Research Council, Conacyt, Grant 48538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogens Bladt .

Editor information

Editors and Affiliations

Appendix

Existence of B  +  and B  − 

In what follows, we will give an analysis of the existence of B  +  and B  −  assuming that we do not have an atom at zero.

Suppose that the polynomial A(s) can be written as \(A(s) ={ \prod \nolimits }_{j=1}^{r}{(s - {\lambda }_{j})}^{{\nu }_{j}}\) for some r such as ∑ j = 1 rν j  = deg(A) and whose poles are given by λ j . Then for

$${A}_{k}(s) ={ \prod \nolimits }_{j\neq k}{(s - {\lambda }_{j})}^{{\nu }_{j} } = \frac{A(s)} {{(s - {\lambda }_{k})}^{{\nu }_{k}}},\quad k = 1,\ldots, r,$$
we obtain that
$$\frac{B(s)} {A(s)} ={ \sum \limits _{j=1}^{r}} \frac{{C}_{j}(s)} {{(s - {\lambda }_{j})}^{{\nu }_{j}}},$$
(3.20)
where the polynomial C j (s) is the Taylor polynomial of \(\frac{B(s)} {{A}_{j}(s)}\) of order ν j  − 1 at the point λ j , i.e.,
$${C}_{j}(s) :={ \sum \limits _{k=0}^{{\nu }_{j}-1}} \frac{1} {k!}{\left ( \frac{B(s)} {{A}_{j}(s)}\right )}^{k}{\lambda }_{ j}{(s - {\lambda }_{j})}^{k}.$$

Taylor’s theorem (in the real or complex case) provides a proof of the existence and uniqueness of the partial fraction decomposition and a characterization of the coefficients. If we define

$${A}_{+}(s) :={ \prod \limits _{j=1}^{r}}{(s - {\lambda }_{j})}^{{\nu }_{j} }{1}_{\{{\lambda }_{j}>0\}},\quad {A}_{-}(s) :={\prod \limits _{j=1}^{r}}{(s - {\lambda }_{ j})}^{{\nu }_{j}}{1}_{\{{\lambda }_{j}<0\}},$$
then from (3.20) we obtain
$$\begin{array}{rcl} \frac{B(s)} {A(s)}& =& {\sum \nolimits }_{j=1}^{r} \frac{{C}_{j}(s)} {{(s - {\lambda }_{j})}^{{\nu }_{j}}}{1}_{\{{\lambda }_{j}>0\}} +{ \sum \nolimits }_{j=1}^{r} \frac{{C}_{j}(s)} {{(s - {\lambda }_{j})}^{{\nu }_{j}}}{1}_{\{{\lambda }_{j}<0\}} \\ & =& \frac{{B}_{+}(s)} {{A}_{+}(s)} + \frac{{B}_{-}(s)} {{A}_{-}(s)}, \\ \end{array}$$
where
$$\begin{array}{rcl} {B}_{+}(s)& :=& {\sum \limits_{j=1}^{r}}{C}_{ j}(s){1}_{\{{\lambda }_{j}>0\}}{ \prod \nolimits}_{k\neq j}^{r}{(s - {\lambda }_{ k})}^{{\nu }_{k} }{1}_{\{{\lambda}_{k}>0\}}, \\ {B}_{-}(s)& :=& {\sum \limits _{j=1}^{r}}{C}_{j}(s){1}_{\{{\lambda }_{j}<0\}}{ \prod \nolimits }_{k\neq j}^{r}{(s- {\lambda }_{ k})}^{{\nu }_{k} }{1}_{\{{\lambda}_{k}<0\}}.\end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Bladt, M., Esparza, L.J.R., Nielsen, B.F. (2013). Bilateral Matrix-Exponential Distributions. In: Latouche, G., Ramaswami, V., Sethuraman, J., Sigman, K., Squillante, M., D. Yao, D. (eds) Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in Mathematics & Statistics, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4909-6_3

Download citation

Publish with us

Policies and ethics