Skip to main content

Vesta and Ceres: Crossing the History of the Solar System

  • Chapter
The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres

Abstract

The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System. Here we discuss the timescale of their formation and evolution and how they would have been affected by their passage through the different phases of the history of the Solar System, in order to draw a reference framework to interpret the data that Dawn mission will supply on them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Y. Amelin, A.N. Krott, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    Article  Google Scholar 

  • Y. Amelin, A. Kaltenbach, T. Iizuka, C.H. Stirling, T.R. Ireland, M. Petaev, S.B. Jacobsen, U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–350 (2010)

    Article  Google Scholar 

  • G. Akridge, P.H. Benoit, D.W.G. Sears, Regolith and megaregolith formation of H chondrites: thermal constraints on the parent body. Icarus 132, 185–195 (1998)

    Article  Google Scholar 

  • E. Asphaug, Growth and evolution of asteroids. Annu. Rev. Earth Planet. Sci. 37, 413–448 (2009)

    Article  Google Scholar 

  • J.A. Baker, M. Bizzarro, N. Wittig, J.N. Connelly, H. Haack, Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436, 1127–1131 (2005)

    Article  Google Scholar 

  • B. Bertotti, P. Farinella, D. Vokrouhlický, Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure (The Netherlands, Kluwer Academic, 2003). ISBN: 1-4020-1428-7

    Google Scholar 

  • R.P. Binzel, S. Xu, Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993)

    Article  Google Scholar 

  • M. Bizzarro, J.A. Baker, H. Haack, K.L. Luundgard, Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophys. J. 632, L41–L44 (2005)

    Article  Google Scholar 

  • W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Mordibelli, D. Vokrouhlicky, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005a)

    Article  Google Scholar 

  • W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Mordibelli, D. Vokrouhlicky, H. Levison, Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005b)

    Article  Google Scholar 

  • A. Bouvier, M. Wadhwa, The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010)

    Article  Google Scholar 

  • J. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010)

    Article  Google Scholar 

  • J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010)

    Article  Google Scholar 

  • J.E. Chambers, G.W. Wetherill, Planets in the asteroid belt. Meteorit. Planet. Sci. 36, 381–399 (2001)

    Article  Google Scholar 

  • M. Chaudisson, M. Gounelle, Short-lived radioactive nuclides in meteorites and early solar system process. C. R. Géosci. 339, 872–884 (2007)

    Article  Google Scholar 

  • J.N. Connelly, Y. Amelin, A.N. Krot, M. Bizzarro, Chronology of the Solar System’s oldest solids. Astrophys. J. 675, L121–L124 (2008)

    Article  Google Scholar 

  • A. Coradini, C. Federico, G. Magni, Formation of planetesimals in an evolving protoplanetary Disk. Astron. Astrophys. 98, 173–185 (1981)

    Google Scholar 

  • A. Coradini, G. Magni, D. Turrini, From gas to satellitesimals: disk formation and evolution. Space Sci. Rev. 153, 411–429 (2010)

    Article  Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008)

    Article  Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, W.F. Bottke, Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus 208, 518–538 (2010)

    Article  Google Scholar 

  • I. De Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2001). ISBN: 0521482194

    Google Scholar 

  • M.C. De Sanctis, E. Ammannito, A. Migliorini, D. Lazzaro, M.T. Capria, L. McFadden, Mineralogical characterization of some V-type asteroids, in support of the NASA Dawn mission. Monthly Not. R. Astron. Soc. 412, 2318–2332 (2011)

    Article  Google Scholar 

  • M.J. Drake, The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001)

    Article  Google Scholar 

  • P. Farinella, Y.D. Vokrouhlicky, Semimajor axis mobility of asteroidal fragments. Science 283, 1507–1510 (1999)

    Article  Google Scholar 

  • C. Federico, A. Coradini, C. Pauselli, Vesta thermal and structural evolution models, submitted to Planetary Space Sci. (2011)

    Google Scholar 

  • A. Ghosh, H.Y. McSween, A thermal model for the differentiation of Asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998)

    Article  Google Scholar 

  • P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973)

    Article  Google Scholar 

  • R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    Article  Google Scholar 

  • R.C. Greenwood, I.A. Franchi, A. Jambon, P.C. Buchanan, Widespread magma oceans on asteroidal bodies in the early solar system. Nature 435, 916–918 (2005)

    Article  Google Scholar 

  • J.M. Hahn, Diagnosing circumstellar Debris disks. Astrophys. J. 719, 1699–1714 (2010)

    Article  Google Scholar 

  • K.E. Haisch, E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  Google Scholar 

  • R.J. Jayawardhana, A. Coffey, A. Scholz, A. Brandeker, M.H. van Kerkwijk, Accretion disks around Young stars: lifetimes, disk locking, and variability. Astrophys. J. 648, 1206–1218 (2006)

    Article  Google Scholar 

  • A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    Article  Google Scholar 

  • K. Keil, Geological history of asteroid 4 Vesta: the smallest terrestrial planet, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 573–584

    Google Scholar 

  • S.J. Kenyon, B.C. Bromley, Dusty rings: signposts of recent planet formation. Astrophys. J. 577, L35–L38 (2002)

    Article  Google Scholar 

  • S.J. Kenyon, B.C. Bromley, Variations on Debris disks: icy planet formation at 30–150 AU for 1–3M solar main-sequence stars. Astrophys. J. Suppl. Ser. 179, 451–483 (2008)

    Article  Google Scholar 

  • S.J. Kenyon, B.C. Bromley, Variations on Debris disks. II. Icy planet formation as a function of the bulk properties and initial sizes of planetesimals. Astrophys. J. Suppl. Ser. 188, 242–279 (2010)

    Article  Google Scholar 

  • T. Kleine, C. Münker, K. Mezger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002)

    Article  Google Scholar 

  • T. Kleine, H. Palme, K. Mezger, A.N. Halliday, Hf–W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310, 1671–1674 (2005)

    Article  Google Scholar 

  • D. Lazzaro, Basaltic Asteroids: a new look on the differentiation process in the main belt, in Proceedings of the XII Latin American IAU Regional Meeting, ed. by G. Magris, G. Bruzual, L. Carigi. Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias, vol. 35 (2009), pp. 1–6

    Google Scholar 

  • H.F. Levison, L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, K. Zahnle, Could the Lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001)

    Article  Google Scholar 

  • J.J. Lissauer, O. Hubickyi, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamics constraints. Icarus 199, 338–350 (2009)

    Article  Google Scholar 

  • G.W. Lugmair, A. Shukolyukov, Early solar system timescales according to 53Mn–53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998)

    Article  Google Scholar 

  • A. Markowski, G. Quitté, A.N. Halliday, T. Kleine, Tungsten isotopic compositions of iron meteorites: chronological constraints vs. cosmogenic effects. Earth Planet. Sci. Lett. 242, 1–15 (2006)

    Article  Google Scholar 

  • F. Marzari, A. Cellino, D.R. Davis, P. Farinella, V. Zappala, V. Vanzani, Origin and evolution of the Vesta asteroid family. Astron. Astrophys. 316, 248–262 (1996)

    Google Scholar 

  • T.B. McCord, J. Castillo-Rogez, A. Rivkin, Ceres: its origin, evolution and structure and Dawn’s potential contribution. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9729-9, (2011, in this issue)

    Google Scholar 

  • T.B. McCord, C. Sotin, Ceres: evolution and current state. J. Geophys. Res. 110, E05009 (2005)

    Article  Google Scholar 

  • H.Y. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the dawn mission. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9637-z, (2011, in this issue)

    Google Scholar 

  • M.R. Meyer, Circumstellar disk evolution: constraining theories of planet formation, in Proceedings of the International Astronomical Union, vol. 4 (2008), pp. 111–122. doi:10.1017/S1743921309031767

    Google Scholar 

  • F. Migliorini, A. Morbidelli, V. Zappalà, B. Gladman, M.E. Bailey, A. Cellino, Vesta fragments from v6 and 3:1 resonances: implications for V-type NEAs and HED meteorites. Meteorit. Planet. Sci. 32, 903–916 (1997)

    Article  Google Scholar 

  • D.A. Minton, R. Malhotra, A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009)

    Article  Google Scholar 

  • D.A. Minton, R. Malhotra, Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744–757 (2010)

    Article  Google Scholar 

  • A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    Article  Google Scholar 

  • A. Morbidelli, W.F. Bottke, D. Nesvorny, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009)

    Article  Google Scholar 

  • A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010)

    Article  Google Scholar 

  • D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007)

    Article  Google Scholar 

  • D.P. O’Brien, M.V. Sykes, The Asteroid belt—creation and destruction of planets. Space Sci. Rev. (2011, this issue)

    Google Scholar 

  • J.C.B. Papaloizou, R.P. Nelson, W. Kley, F.S. Masset, P. Artymowicz, Disk-planet interactions during planet formation, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), pp. 655–668

    Google Scholar 

  • J. Petit, A. Morbidelli, J. Chambers, The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001)

    Article  Google Scholar 

  • C. Pieters, R.P. Binzel, D. Bogard, T. Hiroi, D.W. Mittlefehldt, L. Nyquist, A. Rivkin, H. Takeda, Asteroid-meteorite links: the Vesta conundrum(s), in Asteroids, Comets, Meteors Proceedings IAU Symposium No. 229, ed. by D. Lazzaro, S. Ferraz-Mello, J.A. Fernandez (Cambridge University Press, Cambridge, 2006), pp. 273–288

    Google Scholar 

  • G. Quitté, J.L. Birck, Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data. Earth Planet. Sci. Lett. 219, 201–207 (2004)

    Article  Google Scholar 

  • K. Righter, M.J. Drake, A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997)

    Article  Google Scholar 

  • V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka Press, Moscow, 1969). English Translation: NASA TTF-677.7

    Google Scholar 

  • E.R.D. Scott, Meteoritics and dynamical constrains on the growth mechanisms and formation times of asteroids and Jupiter. Icarus 185, 72–82 (2006)

    Article  Google Scholar 

  • E.R.D. Scott, Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007)

    Article  Google Scholar 

  • A. Shukolyukov, G.W. Lugmair, Live Iron-60 in the early solar system. Science 259, 1138–1142 (1993)

    Article  Google Scholar 

  • G. Srinivasan, J.N. Goswami, N. Bhandari, 26Al in Eucrite piplia Kalan: plausible heat source and formation chronology. Science 284, 1348–1350 (1999)

    Article  Google Scholar 

  • P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: Spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997)

    Article  Google Scholar 

  • P.C. Thomas, J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)

    Article  Google Scholar 

  • K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  Google Scholar 

  • D. Turrini, G. Magni, A. Coradini, Probing the history of Solar System through the cratering records on Vesta and Ceres. Mon. Not. R. Astron. Soc. 413, 2439–2466 (2011). Online Early, doi:10.1111/j.1365-2966.2011.18316.x

    Article  Google Scholar 

  • H.C. Urey, The cosmic abundances of potassium, Uranium, and Thorium and the heat balances of the Earth, the Moon, and Mars, in Proceedings of the National Academy of Sciences of the United States of America, vol. 41 (1955), pp. 127–144

    Google Scholar 

  • K.J. Walsh, A. Morbidelli, The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, id.A126 (2011)

    Article  Google Scholar 

  • M.J. Walter, R.G. Tronnes, pp CO2 Early Earth differentiation. Earth Planet. Sci. Lett. 225, 253–269 (2004)

    Article  Google Scholar 

  • S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977)

    Article  Google Scholar 

  • S.J. Weidenschilling, Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980)

    Article  Google Scholar 

  • S.J. Weidenschilling, F. Marzari, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384, 619–621 (1996)

    Article  Google Scholar 

  • S.J. Weidenschilling, Accretion of planetary embryos in the inner and outer solar system. Phys. Scr. 130, 014021 (2008)

    Article  Google Scholar 

  • S.J. Weidenschilling, Collisional and luminosity evolution of a debris disk: the case of HD 12039. Astrophys. J. 722, 1716–1726 (2010a)

    Article  Google Scholar 

  • S.J. Weidenschilling, Were asteroids born big? An alternative scenario, in 41st Lunar and Planetary Science Conference (2010b), p. 1453. 1–5 March 2010 held in The Woodlands, Texas, LPI Contribution No. 1533

    Google Scholar 

  • G.W. Wetherill, An alternative model for the formation of asteroids. Icarus 100, 307–325 (1992)

    Article  Google Scholar 

  • J.G. Williams, Asteroid family identifications and proper elements, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1989), pp. 1034–1072

    Google Scholar 

  • J. Yang, J.I. Goldstein, E.D.R. Scott, Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888–891 (2007)

    Article  Google Scholar 

  • Q. Yin, S.B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Télouk, F. Albarède, A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  Google Scholar 

  • V. Zappalà, A. Cellino, P. Farinella, Z. Knezevic, Asteroid families I—identification by hierarchical clustering and reliability assessment. Astron. J. 100, 2030–2046 (1990)

    Article  Google Scholar 

  • E. Zinner, An isotopic view of the Early Solar system. Science 300, 265–267 (2003)

    Article  Google Scholar 

  • M.Y. Zolotov, On the composition and differentiation of Ceres. Icarus 204, 183–193 (2009)

    Article  Google Scholar 

  • M.T. Zuber, H.Y. McSween, R.P. Binzel, L.T. Elkins-Tanton, A.S. Konopliv, C.M. Pieters, D.E. Smith, Origin, internal structure and evolution of 4 Vesta. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9806-8. (2011, this issue)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Coradini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Coradini, A., Turrini, D., Federico, C., Magni, G. (2011). Vesta and Ceres: Crossing the History of the Solar System. In: Russell, C., Raymond, C. (eds) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4903-4_3

Download citation

Publish with us

Policies and ethics