The Dawn mission journeys to the center of the main asteroid belt to orbit and explore the two most massive main belt asteroids, Vesta and Ceres. Dawn aims to increase our understanding not just of the present state of these two bodies, but also of the conditions during the time of their formation. It attempts this through achieving a set of measurement objectives in which the physical properties of these asteroids such as mass, slopes, size, density, and spin state are accurately determined, and in which the mineralogical and elemental composition of the surface and near-surface material are probed. Dawn employs ion propulsion technology to enable a modestly-sized launcher to start a moderately-sized spacecraft on its journey, to not only reach the two massive asteroids but also to orbit them, descending to near the surface. Unlike most orbital missions, the initial (Vesta) phase must be completed with sufficient reserves and within a time window that later allows Dawn to explore Ceres. Dawn carries a redundant framing camera, a visible and near-IR spectrometer, a gamma ray and neutron spectrometer, and achieves high-accuracy radiometric and optical navigation to enable gravity field determination. The spacecraft was developed by Orbital Sciences Corporation under the management of the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. Dawn is a Principal Investigator-led mission of the Discovery Program. The PI institution, the University of California, Los Angeles, manages directly the science team, the Dawn Science Center, and the Education and Public Outreach program.


Dawn mission Vesta Ceres Asteroid belt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Brophy, The Dawn ion propulsion system (2011, this issue) Google Scholar
  2. A. Coradini, D. Turrini, C. Federico, G. Magni, Vesta and Ceres: crossing the history of the solar system. Earth Planet. Astrophys. (2011). doi: 10.1007/s11214-011-9792-x Google Scholar
  3. M.C. DeSanctis, A. Coradini, E. Ammannito, G. Filacchione, M.T. Capria, S. Fonte, G. Magni, A. Barbis, A. Bini, M. Dami, I. Ficai-Velotroni, G. Preti, V.I.R. Team, The VIR spectrometer. Space Sci. Rev. (2011). doi: 10.107/s11214-010-9668-5 Google Scholar
  4. A. Eviatar, A. Bar-nun, M. Podolak, Europan surface phenomena, Icarus, 61, 185–191 (1985). doi: 10.1006/0019-1035(85)90100-9 CrossRefGoogle Scholar
  5. T.C. Fraschetti, M.D. Rayman, C.T. Russell, C.A. Raymond, Dawn discovery mission: lessons learned, in Proceedings of 6th IAA International Conference on Low-Cost Planetary Missions, Kyoto, Japan, 11–13 October 2005 Google Scholar
  6. A. Konopliv, S.W. Asmar, B.G. Bills, N. Mastrodemos, R.S. Park, C.A. Raymond, D.E. Smith, M.T. Zuber, The Dawn Gravity Investigation at Vesta and Ceres. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9794-8 Google Scholar
  7. J.-Y. Li, P.C. Thomas, B. Carcich, M.J. Mutchler, L.A. McFadden, C.T. Russell, S.S. Weinstein-Weiss, M.D. Rayman, C.A. Raymond, Improved measurement of Asteroid (4) Vesta’s rotational axis orientation. Icarus 1, 528–534 (2010). doi: 10.1016/j.icarus.2010.09.019 Google Scholar
  8. J.M. Makowski, V. Thomas, K. Nelson, T. Meyer, M. Violet, J. Williams, G.M. Brown, C. Cardoso, B. Pavri, D. Bruno, M. Chiville, D. Termohlen, The Dawn spacecraft. Space Sci. Rev. (2011, this issue) Google Scholar
  9. T.B. McCord, J. Castillo-Rogez, A. Rivkin, Ceres: Its origin, evolution, and structure and Dawn’s potential contribution. Space Sci. Rev. (2011). doi: 10.1007/s11214-010-9729-9 Google Scholar
  10. T.B. McCord, J.B. Adams, T.V. Johnson, Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970). doi: 10.1126/science.168.3938.1445 CrossRefGoogle Scholar
  11. L.A. McFadden, J. Wise, J.D. Ristvey, Jr. W. Cobb, The Education and Public Outreach Program for NASA’s Dawn Mission. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9840-6 Google Scholar
  12. H.Y. McSween, E. Ammannito, F. Capaccioni, M.T. Capria, J.-P. Combe, A. Coradini, M.C. DeSanctis, M. Farina, G. Filacchione, H. McSween, G. Magni, C. Pieters, C.A. Raymond, C.T. Russell, J.M. Sunshine, T. Titus, M.J. Toplis, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Sci. Rev. (2011). doi: 10.1007/s11214-010-9637-z Google Scholar
  13. H.Y. McSween, Meteorites and Their Parent Planets (Cambridge University Press, Cambridge, 1987), p. 237 Google Scholar
  14. D. O’Brien, M.V. Sykes, The origin and evolution of the asteroid belt—implications for Vesta and Ceres. Space Sci. Rev. (2011). doi: 10.1007/s21214-011-9808-6 Google Scholar
  15. C. Peebles, Asteroids: A History (Smithsonian Inst. Press, New York, 2000), p. 280 Google Scholar
  16. C. Pieters, L.A. McFadden, T. Prettyman, M.C. DeSanctis, T.B. McCord, T. Hiroi, R. Klima, J.-Y. Li, R. Jaumann, Surface composition of Vesta: issues and integrated approach. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9809-5 Google Scholar
  17. C. Polanskey, S.P. Joy, C.A. Raymond, Dawn science planning operations, and archiving. Space Sci. Rev. (2011, this issue) Google Scholar
  18. T.H. Prettyman, W.C. Feldman, H.Y. McSween, Jr., R.D. Dingler, D.C. Enemark, D.E. Patricl, S.A. Storms, J.S. Hendricks, J.P. Morgenthaler, K.M. Pitman, R.C. Reedy, Dawn’s gamma ray and neutron detector (2011, this issue) Google Scholar
  19. M.D. Rayman, T.C. Fraschetti, C.A. Raymond, C.T. Russell, Coupling of system resource margins through the use of electric propulsion: implications in preparing for the Dawn mission to Ceres and Vesta. Acta Astronaut. 60, 930–938 (2007). doi: 10.1016/j.actraastro.2006.11.012 CrossRefGoogle Scholar
  20. C.A. Raymond, R. Jaumann, A. Nathues, H. Sierks, T. Roatsch, F. Preusker, F. Scholten, R. Gaskell, L. Jorda, H.-U. Keller, M. Zuber, D. Smith, N. Mastrodemos, S. Mottola, The Dawn topography investigation. Space Sci. Rev. (2011, this issue) Google Scholar
  21. A. Rivkin, J.-Y. Li, R.E. Milliken, L.F. Lim, A.J. Lovell, B.E. Schmidt, L.A. McFadden, B.A. Cohen, The surface composition of Ceres. Space Sci. Rev. (2011). doi: 10.1007/s11214-010-9677-4 Google Scholar
  22. C.T. Russell, F. Capaccioni, A. Coradini, M.C. De Sanctis, W.C. Feldman, R. Jaumann, H.U. Keller, T.B. McCord, L.A. McFadden, S. Mottola, C.M. Pieters, T.H. Prettyman, C.A. Raymond, M.V. Sykes, D.E. Smith, M.T. Zuber, Dawn mission to Vesta and Ceres: symbiosis between terrestrial observations and robotic exploration. Earth Moon Planets 101, 65–91 (2007). doi: 10.1007/s11038-007-9151-9 CrossRefGoogle Scholar
  23. H. Sierks, H.U. Keller, R. Jaumann, H. Michalik, T. Behnke, F. Bubenhagen, I. Buttner, U. Carsenty, U. Christensen, R. Enge, B. Fiethe, P. Guierrez Marques, H. Hartwig, H. Kruger, W. Kuhne, T. Maue, S. Mottola, A. Nathues, K.-U. Reiche, M.L. Richards, T. Roatsch, S.E. Schroder, I. Szemerey, M. Tschentscher, The Dawn framing camera. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9745-4 Google Scholar
  24. P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E.N. Wells, Vesta: spin pole, size and shape from HST images. Icarus 128, 88–94 (1997). doi: 10.1006/icar.1997.5736 CrossRefGoogle Scholar
  25. R.L. Wildfang, Rome’s Vestal Virgins: A Study of Rome’s Vestal Priestesses in the Late Republic and Early Empire (Routledge, New York, 2006) Google Scholar
  26. T.C. Worsfold, History of the Vestal Virgins of Rome (Rider & Co., Paternoster House, E.C., London, 1934) Google Scholar
  27. M. Zuber, H. McSween, R.P. Binzel, L.T. Elkins-Tanton, A.S. Konopliv, C.M. Pieters, D.E. Smith, Origin, internal structure, and evolution of 4 Vesta. Space Sci. Rev. (2011). doi: 10.1007/s11214-011-9806-8 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Geophysics and Planetary Physics, Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations