The Geometry of Collapsing Isotropic Fluids

  • Roberto Giambò
  • Giulio Magli
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 26)


The study of spherically symmetric spacetimes modeling collapsing isotropic fluids is a recurrent topic in relativistic literature. What makes it one of the most intriguing problems in gravitational collapse is that perfect fluids are a direct, physically interesting generalization of the so-called Tolman–Bondi–Lemaitre (TBL) solution, which is one of the few known-in-details solutions dynamically collapsing to a singularity. The TBL solution is indeed long known to have naked singularities, while the case of isotropic fluids remains almost open. Some results are actually known from numerical relativity, but little is known about the geometry of the spacetimes: whether a singularity is developed, and if that is the case, what is the causal structure of the solution. We report here on some recent results which shed new light on this problem.


Causal Structure Apparent Horizon Gravitational Collapse Naked Singularity Singular Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Choptuik, M.W.: Phys. Rev. Lett. 70, 9 (1993)CrossRefGoogle Scholar
  2. 2.
    Christodoulou, D.: Commun. Math. Phys. 93, 171 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cooperstock, F.I., Jhingan, S., Joshi, P.S., Singh, T.P.: Class. Quant. Grav. 14, 2195 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fayos, F., Torres, R.: Class. Quantum Grav. 28, 215023 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Giambò, R., Giannoni, F., Magli, G., Piccione, P.: Commun. Math. Phys. 235(3), 545 (2003)MATHCrossRefGoogle Scholar
  6. 6.
    Giambò, R., Giannoni, F., Magli, G., Piccione, P.: Class. Quantum Grav. 20, L75 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Harada, T.: Phys. Rev. D 58, 104015 (1998)CrossRefGoogle Scholar
  8. 8.
    Iguchi, H., Harada T., Mena, F.C.: Class. Quantum Grav. 22, 841 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Joshi, P.S., Malafarina, D., Saraykar, R.V.: Int. J. Mod. Phys. D, arxiv:1107.3749 (2011)Google Scholar
  10. 10.
    Joshi, P.S., Singh, T.P.: Class. Quant. Grav. 13, 559 (1996)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Neilsen D.W., Choptuik, M.W.: Class. Quantum Grav. 17, 761 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Nolan, B.C.: Class. Quantum Grav. 20, 575 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ori, A., Piran, T.: Phys. Rev. D 42(4), 1068 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Papapetrou A., Hamoui, A.: Ann. Inst. H Poincaré 6, 343 (1967)Google Scholar
  15. 15.
    Penrose, R.: R. Nuovo Cim. 1, 252 (1969); reprinted in Gen. Rel. Grav. 34, 1141 (2002)Google Scholar
  16. 16.
    Snajdr, M.: Class. Quantum Grav. 23, 3333 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Science and Technology, Mathematics DivisionUniversity of CamerinoCamerinoItaly
  2. 2.Department of MathematicsPolytechnic of MilanMilanItaly

Personalised recommendations