Skip to main content

Area Inequalities for Stable Marginally Trapped Surfaces

  • Conference paper
  • First Online:
Recent Trends in Lorentzian Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 26))

Abstract

We discuss a family of inequalities involving the area, angular momentum and charges of stably outermost marginally trapped surfaces in generic non-vacuum dynamical spacetimes, with non-negative cosmological constant and matter sources satisfying the dominant energy condition. These inequalities provide lower bounds for the area of spatial sections of dynamical trapping horizons, namely hypersurfaces offering quasi-local models of black hole horizons. In particular, these inequalities represent particular examples of the extension to a Lorentzian setting of tools employed in the discussion of minimal surfaces in Riemannian contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, one could start characterizing MOTS stability in terms of the principal eigenvalue λ X . Then, the expression of λ X in a Rayleigh–Ritz type characterization [4] leads essentially to the integral inequality. See M. Mars’ contribution, where the role of α is played by a function u.

References

  1. Acena, A., Dain, S., Clement, M.E.G.: Horizon area–angular momentum inequality for a class of axially symmetric black holes. Class. Quant. Grav. 28, 105,014 (2011). DOI 10.1088/0264-9381/28/10/105014

    Google Scholar 

  2. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces (2010)

    Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111,102 (2005)

    Google Scholar 

  4. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Ansorg, M., Hennig, J., Cederbaum, C.: Universal properties of distorted Kerr-Newman black holes. Gen. Rel. Grav. 43, 1205–1210 (2011). DOI 10.1007/s10714-010-1136-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Ansorg, M., Pfister, H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quant. Grav. 25, 035,009 (2008). DOI 10.1088/0264-9381/25/3/035009

    MathSciNet  Google Scholar 

  7. Arms, J., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein’s equations. II. Several Killing fields and the Einstein Yang-Mills equations. Annals Phys. 144, 81–106 (1982). DOI 10.1016/0003-4916(82)90105-1

    MathSciNet  MATH  Google Scholar 

  8. Ashtekar, A., Beetle, C., Lewandowski, J.: Mechanics of rotating isolated horizons. Phys.Rev. D64, 044,016 (2001). DOI 10.1103/PhysRevD.64.044016

    MathSciNet  Google Scholar 

  9. Ashtekar, A., Engle, J., Pawlowski, T., Van Den Broeck, C.: Multipole moments of isolated horizons. Class. Quant. Grav. 21, 2549 (2004)

    Article  MATH  Google Scholar 

  10. Ashtekar, A., Fairhurst, S., Krishnan, B.: Isolated horizons: Hamiltonian evolution and the first law. Phys. Rev. D62, 104,025 (2000)

    MathSciNet  Google Scholar 

  11. Ashtekar, A., Fairhurst, S., Krishnan, B.: Isolated horizons: Hamiltonian evolution and the first law. Phys.Rev. D62, 104,025 (2000). DOI 10.1103/PhysRevD.62.104025

    MathSciNet  Google Scholar 

  12. Ashtekar, A., Galloway, G.J.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ashtekar, A., Krishnan, B.: Dynamical horizons: Energy, angular momentum, fluxes and balance laws. Phys. Rev. Lett. 89, 261,101 (2002)

    Article  MathSciNet  Google Scholar 

  14. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D 68, 104,030 (2003)

    Article  MathSciNet  Google Scholar 

  15. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Liv. Rev. Relat. 7, 10 (2004). http://www.livingreviews.org/lrr-2004-10. URL (cited on 9 March 2012) http://www.livingreviews.org/lrr-2004-10

  16. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations. Phys. Rev. D75, 084,019 (2007)

    MathSciNet  Google Scholar 

  17. Booth, I., Fairhurst, S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D77, 084,005 (2008). DOI 10.1103/PhysRevD.77.084005

    MathSciNet  Google Scholar 

  18. Cao, L.M.: Deformation of Codimension-2 Surface and Horizon Thermodynamics. JHEP 1103, 112 (2011). DOI 10.1007/JHEP03(2011)112

    Article  Google Scholar 

  19. Carter, B.: Republication of: Black hole equilibrium states part ii. general theory of stationary black hole states. Gen. Relat. Gravit. 42, 653–744 (2010). http://dx.doi.org/10.1007/s10714-009-0920-9. 10.1007/s10714-009-0920-9

  20. Chrusciel, P., Kondracki, W.: Some global charges in classical Yang-Mills theory. Phys.Rev. D36, 1874–1881 (1987). DOI 10.1103/PhysRevD.36.1874

    MathSciNet  Google Scholar 

  21. Chruściel, P.T.: Mass and angular-momentum inequalities for axi-symmetric initial data sets I. Positivity of mass. Annals Phys. 323, 2566–2590 (2008). DOI 10.1016/j.aop.2007.12.010

    MATH  Google Scholar 

  22. Chruściel, P.T., Li, Y., Weinstein, G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular-momentum. Annals Phys. 323, 2591–2613 (2008). DOI 10.1016/j.aop.2007.12.011

    MATH  Google Scholar 

  23. Chrusciel, P.T., Lopes Costa, J.: Mass, angular-momentum, and charge inequalities for axisymmetric initial data. Class. Quant. Grav. 26, 235,013 (2009). DOI 10.1088/0264-9381/26/23/235013

    Google Scholar 

  24. Costa, J.L.: A Dain Inequality with charge. arXiv:0912.0838 (2009)

    Google Scholar 

  25. Dain, S.: Angular-momentum-mass inequality for axisymmetric black holes. Phys. Rev. Lett. 96, 101,101 (2006)

    Article  MathSciNet  Google Scholar 

  26. Dain, S.: Proof of the (local) angular momemtum-mass inequality for axisymmetric black holes. Class. Quant. Grav. 23, 6845–6856 (2006). DOI 10.1088/0264-9381/23/23/015

    Article  MathSciNet  MATH  Google Scholar 

  27. Dain, S.: Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Diff. Geom. 79, 33–67 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Dain, S.: Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes. Phys. Rev. D82, 104,010 (2010). DOI 10.1103/PhysRevD.82.104010

    Google Scholar 

  29. Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quant. Grav. 29, 073,001 (2012). DOI 10.1088/0264-9381/29/7/073001

    Google Scholar 

  30. Dain, S., Jaramillo, J.L., Reiris, M.: Area-charge inequality for black holes. Class.Quant.Grav. 29, 035,013 (2012). DOI 10.1088/0264-9381/29/3/035013

    MathSciNet  Google Scholar 

  31. Dain, S., Reiris, M.: Area - Angular momentum inequality for axisymmetric black holes. Phys.Rev.Lett. 107, 051,101 (2011). DOI 10.1103/PhysRevLett.107.051101

    Article  Google Scholar 

  32. Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einsteins equations I. One Killing field. Ann. Inst. H. Poincaré 33, 147–194 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Gabach Clement, M.E.: Comment on Horizon area-Angular momentum inequality for a class of axially symmetric black holes. arXiv:1102.3834 (2011)

    Google Scholar 

  34. Gabach Clement, M.E., Jaramillo, J.L.: Black hole Area-Angular momentum-Charge inequality in dynamical non-vacuum spacetimes. Accepted in Phys. Rev. D. arXiv:1111.6248 (2012)

    Google Scholar 

  35. Gabach Clement, M.E., Jaramillo, J.L., Reiris, M.: Proof of the area-angular momentum-charge inequality for axisymmetric black holes. arXiv:1207.6761 (2012)

    Google Scholar 

  36. Galloway, G.J., Schoen, R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun.Math.Phys. 266, 571–576 (2006). DOI 10.1007/s00220-006-0019-z

    Article  MathSciNet  MATH  Google Scholar 

  37. Hayward, S.: General laws of black-hole dynamics. Phys. Rev. D 49, 6467 (1994)

    Article  MathSciNet  Google Scholar 

  38. Hayward, S.: Energy conservation for dynamical black holes. Phys. Rev. Lett. 93, 251,101 (2004)

    Article  MathSciNet  Google Scholar 

  39. Hayward, S.A.: Energy and entropy conservation for dynamical black holes. Phys. Rev. D 70, 104,027 (2004)

    Google Scholar 

  40. Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quant. Grav. 25, 162,002 (2008)

    Article  MathSciNet  Google Scholar 

  41. Hennig, J., Cederbaum, C., Ansorg, M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory. Commun. Math. Phys. 293, 449–467 (2010). DOI 10.1007/s00220-009-0889-y

    Article  MathSciNet  MATH  Google Scholar 

  42. Hollands, S.: Horizon area-angular momentum inequality in higher dimensional spacetimes. Class.Quant.Grav. 29, 065,006 (2012). DOI 10.1088/0264-9381/29/6/065006

    MathSciNet  Google Scholar 

  43. Jaramillo, J.L., Reiris, M., Dain, S.: Black hole Area-Angular momentum inequality in non-vacuum spacetimes. Phys.Rev. D84, 121,503 (2011). DOI 10.1103/PhysRevD.84.121503

    Google Scholar 

  44. Jaramillo, J.L.: A note on degeneracy, marginal stability and extremality of black hole horizons. Class.Quant.Grav. 29 177,001 (2012). DOI 10.1088/0264-9381/29/17/177001

    Article  MathSciNet  Google Scholar 

  45. Mars, M.: Stability of MOTS in totally geodesic null horizons. Class.Quant.Grav. 29 145,019 (2012). DOI 10.1088/0264-9381/29/14/145019

    Google Scholar 

  46. Penrose, R.: Gravitational collapse: The role of general relativity. Riv. Nuovo Cim. 1, 252 (1969)

    Google Scholar 

  47. Penrose, R.: Naked singularities. Annals N. Y. Acad. Sci. 224, 125 (1973)

    Article  Google Scholar 

  48. Racz, I.: A simple proof of the recent generalisations of Hawking’s black hole topology theorem. Class. Quant. Grav. 25, 162,001 (2008). DOI 10.1088/0264-9381/25/16/162001

    Article  MathSciNet  Google Scholar 

  49. Ryder, L.: Dirac monopoles and the Hopf map S(3) to S(2). J. Phys. A A13, 437–447 (1980). DOI 10.1088/0305-4470/13/2/012

    Article  MathSciNet  Google Scholar 

  50. Simon, W.: Gravitational field strength and generalized Komar integral. Gen. Rel. Grav. 17, 439 (1985). DOI 10.1007/BF00761903

    Article  MATH  Google Scholar 

  51. Simon, W.: Bounds on area and charge for marginally trapped surfaces with a cosmological constant. Class. Quant. Grav. 29, 062,001 (2012). DOI 10.1088/0264-9381/29/6/062001

    Article  Google Scholar 

  52. Sudarsky, D., Wald, R.M.: Extrema of mass, stationarity, and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D46, 1453–1474 (1992). DOI 10.1103/PhysRevD.46.1453

    MathSciNet  Google Scholar 

  53. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    MATH  Google Scholar 

  54. Weinberg, S.: The quantum theory of fields. Modern applications, vol. 2. Cambridge University Press, New York (1996)

    Google Scholar 

  55. Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975). DOI 10.1103/PhysRevD.12.3845. http://link.aps.org/doi/10.1103/PhysRevD.12.3845

    Google Scholar 

Download references

Acknowledgments

This work is fully indebted to the close scientific collaboration with S. Dain, M.E. Gabach Clément, M. Reiris and W. Simon. I would like to express here my gratitude to them. I would also like to thank A. Aceña, M. Ansorg, C. Barceló, M. Mars and J.M.M. Senovilla for useful discussions. I thank M.E. Gabach Clément for her careful reading of this chapter. I acknowledge the support of the Spanish MICINN (FIS2008-06078-C03-01) and the Junta de Andalucía (FQM2288/219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Jaramillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Jaramillo, J.L. (2012). Area Inequalities for Stable Marginally Trapped Surfaces. In: Sánchez, M., Ortega, M., Romero, A. (eds) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4897-6_5

Download citation

Publish with us

Policies and ethics