Skip to main content

Stability of Marginally Outer Trapped Surfaces and Applications

  • Conference paper
  • First Online:
Recent Trends in Lorentzian Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 26))

Abstract

Marginally outer trapped surfaces (MOTS) are special types of codimension-two space-like surfaces in Lorentzian space-times defined by the vanishing of one of its future null expansions. Such surfaces play an important role in gravitational theory as indicators of strong gravitational fields and share some of the properties of minimal hypersurfaces, in particular the existence of a useful notion of stability. In this contribution I describe this notion and present some of its consequences. In particular I will summarize the implications of stability on the topology of MOTS, their role as barriers, the interplay between stability and space–times symmetries and the stability of Killing horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This result states, roughly speaking, that if two null hypersurfaces touch each other at p and satisfy the property that, locally near p, the hypersurface lying to the past has non-negative null expansion while the one lying to the future has non-positive null expansion, then the two null hypersurfaces must coincide in a neighbourhood of p. The precise statement can be found in Theorems 2.1 and 3.4 in [24].

References

  1. Andersson, L.: The global existence problem in general relativity. In: Chruściel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behaviour of Gravitational Fields. Birkhäuser, Basel (2004)

    Google Scholar 

  2. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces. Proceedings of the Complex Analysis & Dynamical Systems IV Conference, Nahariya, Israel, May 2009 (arXiv:1006.4601)

    Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (4 pp.) (2005)

    Google Scholar 

  4. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941–972 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ashtekar, A., Galloway, G.J.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Nirenberg L., Varadhan S.R.S.: The ground state and maximum principle for 2nd order elliptic operators in general domains. C.R. Acad. Sci. Paris, 317, Série I, 51–56 (1993)

    Google Scholar 

  8. Bray, H., Hayward, S., Mars, M., Simon. W.: Generalized inverse mean curvature flows in spacetime. Commun. Math. Phys. 272, 119–138 (2007)

    Google Scholar 

  9. Cai, M., Galloway, G.J.: On the topology and area of higher dimensional black holes. Class. Quantum Grav. 18, 2707–2718 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrasco, A., Mars, M.: Stability of marginally outer trapped surfaces and symmetries. Class. Quantum Grav. 26, 175002 (19 pp.) (2009)

    Google Scholar 

  11. Chavel, I.: Riemannian geometry, a modern introduction. Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza-Klein space-times. Ann. Henri Poincaré 10, 893–912 (2009)

    Article  MATH  Google Scholar 

  14. Chruściel, P.T., Eckstein, M., Nguyen, L., Szybka, S.J.: Existence of singularities in two-Kerr black holes. Class. Quantum Grav. 28, 245017 (2011)

    Article  Google Scholar 

  15. Claudel, C.-M.: Black holes and closed trapped surfaces: a revision of a classic theorem. arXiv:gr-qc/0005031

    Google Scholar 

  16. Colding, T.H., Minicozzi W.P.: Minimal surfaces. Courant Lecture Notes in Mathematics, vol. 4. Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  17. Coll, B., Hildebrandt, S., Senovilla, J.M.M.: Kerr–Schild symmetries. Gen. Rel. Grav. 33, 649–670 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dafermos, M.: Spherically symmetric spacetimes with a trapped surface. Class. Quantum Grav. 22, 2221–2232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dain, S., Reiris, M.: Area-angular momentum inequality for axisymmetric black holes. Phys. Rev. Lett. 107, 051101 (2011)

    Article  Google Scholar 

  20. Dain, S.: Geometric inequalities for axially symmetric black holes. Classical and Quantum Gravity 29, 073001 (2012) (arXiv:1111.3615)

    Google Scholar 

  21. Donsker, M.D., Varadhan S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Nat. Acad. Sci. USA 72, 780–783 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second-order elliptic differential operators. Commun. Pure Appl. Math. 29, 591–621 (1976)

    Article  Google Scholar 

  23. Eichmair, M.: The plateau problem for marginally trapped surfaces. J. Diff. Geom. 83, 551–584 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Galloway, G.J.: Maximum principles for null hypersurfaces and null splitting theorems. Ann. Poincaré Phys. Theor. 1, 543–567 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galloway, G.J.: Null geometry and the Einstein equations. In: Chrściel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behaviour of Gravitational fields. Birkhäuser, Basel (2004)

    Google Scholar 

  26. Galloway, G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Comm. Anal. Geom. 16, 217–229 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Galloway, G.J., Schoen, R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hayward, S.A.: General laws of black-hole dynamics. Phys. Rev. D 49, 6467–6474 (1994)

    Article  MathSciNet  Google Scholar 

  29. Hawking, S.W.: The event horizon, in black holes. In: DeWitt, C., DeWitt, B.S. (eds.) Les Houches lectures. North Holland, Amsterdam (1972)

    Google Scholar 

  30. Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and the horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 162002 (2008)

    Article  MathSciNet  Google Scholar 

  31. Heusler, M.: Black hole uniqueness theorems. Cambridge Lecture Notes in Physics, vol. 6. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  32. Jaramillo, J.L., Area-angular momentum inequality in stable marginally trapped surfaces, in this volume.

    Google Scholar 

  33. Jaramillo, J.L., Reiris, M., Dain, S.: Black hole Area-Angular momentum inequality in non-vacuum spacetimes. Phys. Rev D 84, 121503 (2011) arXiv:1106.3743 (gr-qc)

    Google Scholar 

  34. Krein. M., Rutman M.A.: Linear operators leaving invariant a cone in a Banach space. Usp. Mat. Nauk. (N.S.) 3, 59–118 (1948); English translation in Amer. Math. Soc. Trans. Ser. (1), 10 199–325 (1962)

    Google Scholar 

  35. Mars, M., Senovilla, J.M.M.: Trapped surfaces and symmetries. Class. Quantum Grav. 20, L293–L300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mars, M.: Stability of MOTS in totally geodesic null horizons, Class. Quantum Grav. 29, 145019 (2012)

    Article  Google Scholar 

  37. Newman, R.P.A.C.: Topology and stability of marginal 2-surfaces. Class. Quantum Grav. 4, 277–290 (1987)

    Article  MATH  Google Scholar 

  38. Penrose, R.: Gravitational collapse—the role of general relativity. Nuovo Cimiento 1, 252–276 (1965)

    Google Scholar 

  39. Rácz, I., Wald, R.M.: Extensions of spacetimes with Killing horizons. Class. Quantum Grav. 9, 2643–2656 (1992)

    Article  MATH  Google Scholar 

  40. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30, 701–848 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Senovilla, J.M.M.: Classification of spacelike surfaces in spacetime. Class. Quantum Grav. 24, 3091–3124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  43. Wald, R.M.: Gravitational collapse and cosmic censorship, In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics, vol. 100, pp. 69–85. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  44. Williams, C.: A black hole with no marginally trapped tube asymptotic to its event horizon. Proceedings of the Complex Analysis & Dynamical Systems IV Conference, Nahariya, Israel, May 2009 (arXiv:1005.5401)

    Google Scholar 

Download references

Acknowledgements

Financial support under the projects FIS2009- 07238 (Spanish MEC) and P09-FQM-4496 (Junta de Andalucía and FEDER funds) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Mars, M. (2012). Stability of Marginally Outer Trapped Surfaces and Applications. In: Sánchez, M., Ortega, M., Romero, A. (eds) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4897-6_4

Download citation

Publish with us

Policies and ethics