Skip to main content

Nuclear Medicine Imaging in Genitourinary Oncology

  • Chapter
  • First Online:
Atlas of Genitourinary Oncological Imaging

Part of the book series: Atlas of Oncology Imaging ((AOI,volume 1))

  • 2294 Accesses

Abstract

Noninvasive diagnostic imaging with radioactive pharmaceuticals is often referred to as nuclear imaging or scintigraphy. General nuclear medicine texts offer technical details of nuclear imaging technology and the large pharmacopoeia of radiopharmaceuticals in clinical use and research. This chapter focuses on radiolabeled agents given intravenously in small, nontherapeutic trace amounts for scintigraphic tumor detection as part of disease staging and response evaluation in genitourinary (GU) oncology, including preeminent radiotracers in current use and selected new tracers now in trials, which likely will be more widely available in clinical practice to GU oncologists in the next 10 years. Sentinel lymph node scintigraphy is also discussed as a promising diagnostic adjunct for nodal staging being explored in certain GU malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J Clin Oncol. 2008;26:1148–59.

    Article  PubMed  Google Scholar 

  2. Scher HI, Morris MJ, Kelly WK, et al. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin Cancer Res. 2005;11:5223–32.

    Article  PubMed  Google Scholar 

  3. Coleman RE, Mashiter G, Whitaker KB, et al. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29:1354–9.

    PubMed  CAS  Google Scholar 

  4. Wawroschek F, Vogt H, Wengenmair H, et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int. 2003;70:303–10.

    Article  PubMed  Google Scholar 

  5. Leijte JA, Hughes B, Graafland NM, et al. Two-center evaluation of dynamic sentinel node biopsy for squamous cell carcinoma of the penis. J Clin Oncol. 2009;27:3325–9.

    Article  PubMed  Google Scholar 

  6. Hadway P, Smith Y, Corbishley C, et al. Evaluation of dynamic lymphoscintigraphy and sentinel lymph-node biopsy for detecting occult metastases in patients with penile squamous cell carcinoma. BJU Int. 2007;100:561–5.

    Article  PubMed  Google Scholar 

  7. Hadway P, Smith Y, Corbishley C, et al. Sentinel lymph-node biopsy in patients with squamous cell carcinoma of the penis. BJU Int. 2009;103:1199–203.

    Article  Google Scholar 

  8. Gardiner RA, Fitzpatrick JM, Constable AR, et al. Human prostatic lymphoscintigraphy. A preliminary report. Br J Urol. 1979;51:300–3.

    Article  PubMed  CAS  Google Scholar 

  9. Zuckier LS, Finkelstein M, Kreutzer ER, et al. Technetium-99 m antimony sulphide colloid lymphoscintigraphy of the prostate by direct transrectal injection. Nucl Med Commun. 1990;11:589–96.

    Article  PubMed  CAS  Google Scholar 

  10. Silva Jr N, Anselmi CE, Anselmi OE, et al. Use of the gamma probe in sentinel lymph node biopsy in patients with prostate cancer. Nucl Med Commun. 2005;26:1081–6.

    Article  PubMed  Google Scholar 

  11. Hinev A, Klissarova A, Ghenev P, et al. Radioisotopic detection of sentinel lymph nodes in clinically localized high-risk prostate cancer. J BUON. 2009;14:661–7.

    PubMed  CAS  Google Scholar 

  12. Spiess PE, Izawa JI, Bassett R, et al. Preoperative lymphoscintigraphy and dynamic sentinel node biopsy for staging penile cancer: results with pathological correlation. J Urol. 2007;177:2157–61.

    Article  PubMed  Google Scholar 

  13. Spiess PE, Izawa JI, Bassett R, et al. Role of dynamic sentinel node biopsy in penile cancer: our experience. J Surg Oncol. 2006;93:181–5.

    Article  Google Scholar 

  14. Vermeeren L, Valdés Olmos RA, Meinhardt W, et al. Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J Nucl Med. 2009;50:865–70.

    Article  PubMed  Google Scholar 

  15. Hungerhuber E, Schlenker B, Frimberger D, et al. Lymphoscintigraphy in penile cancer: limited value of sentinel node biopsy in patients with clinically suspicious lymph nodes. World J Urol. 2006;24:319–24.

    Article  PubMed  CAS  Google Scholar 

  16. Heyns CF, Theron PD. Evaluation of dynamic sentinel lymph node biopsy in patients with squamous cell carcinoma of the penis and palpable inguinal nodes. BJU Int. 2008;102:305–9.

    Article  PubMed  Google Scholar 

  17. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199:751–6.

    PubMed  CAS  Google Scholar 

  18. Effert PJ, Bares R, Handt S, et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with sup 18 fluorine-labeled deoxyglucose. J Urol. 1996;155:994–8.

    Article  PubMed  CAS  Google Scholar 

  19. National Comprehensive Cancer Network: NCCN clinical practice guidelines in oncology. Prostate Cancer v.2.2010. 2010.

    Google Scholar 

  20. Oyama N, Akino H, Suzuki Y, et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol. 2002;4:99–104.

    Article  PubMed  Google Scholar 

  21. Hillner BE, Siegel BA, Shields AF, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49:1928–35.

    Article  PubMed  Google Scholar 

  22. Wahl RL. Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med. 2004;45 Suppl 1:82S–95.

    PubMed  Google Scholar 

  23. Schöder H, Herrmann K, Gönen M, et al. 2-[18F] Fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11:4761–9.

    Article  PubMed  Google Scholar 

  24. Seltzer MA, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol. 1999;162:1322–8.

    Article  PubMed  CAS  Google Scholar 

  25. Morris MJ, Akhurst T, Larson SM, et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res. 2005;11:3210–6.

    Article  PubMed  CAS  Google Scholar 

  26. Agus DB, Golde DW, Sgouros G, et al. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res. 1998;58:3009–14.

    PubMed  CAS  Google Scholar 

  27. Oyama N, Kim J, Jones LA, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl Med Biol. 2002;29:783–90.

    Article  PubMed  CAS  Google Scholar 

  28. Morris MJ, Akhurst T, Osman I, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology. 2002;59:913–8.

    Article  PubMed  Google Scholar 

  29. Nelius T, Klatte T, de Riese W, Filleur S. Impact of PSA flare-up in patients with hormone-refractory prostate cancer undergoing chemotherapy. Int Urol Nephrol. 2008;40:97–104.

    Article  PubMed  CAS  Google Scholar 

  30. Bucerius J, Ahmadzadehfar H, Hortling N, et al. Incidental diagnosis of a PSA-negative prostate cancer by 18FDG-PET/CT in a patient with hypopharyngeal cancer. Prostate Cancer Prostatic Dis. 2007;10:307–10.

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe H, Kanematsu M, Kondo H, et al. Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18F-fluorodeoxyglucose PET and MR imaging. J Magn Reson Imaging. 2010;31:1151–6.

    Article  PubMed  Google Scholar 

  32. Liu IJ, Zafar MB, Lai YH, et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.

    Article  PubMed  CAS  Google Scholar 

  33. Hofer C, Laubenbacher C, Block T, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36:31–5.

    Article  PubMed  CAS  Google Scholar 

  34. Beattie BJ, Smith-Jones PM, Jhanwar YS, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51:183–92.

    Article  PubMed  CAS  Google Scholar 

  35. Dehdashti F, Picus J, Michalski JM, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32:344–50.

    Article  PubMed  Google Scholar 

  36. Larson SM, Morris M, Gunther I, et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med. 2004;45:366–73.

    PubMed  CAS  Google Scholar 

  37. Elgamal AA, Troychak MJ, Murphy GP. ProstaScint scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: analysis of 136 scans of 100 patients. Prostate. 1998;37:261–9.

    Article  PubMed  CAS  Google Scholar 

  38. Polascik TJ, Manyak MJ, Haseman MK, et al. Comparison of clinical staging algorithms and 111indium-capromab pendetide immunoscintigraphy in the prediction of lymph node involvement in high risk prostate carcinoma patients. Cancer. 1999;85:1586–92.

    Article  PubMed  CAS  Google Scholar 

  39. Manyak MJ, Hinkle GH, Olsen JO, et al. Immunoscintigraphy with indium-111-capromab pendetide: evaluation before definitive therapy in patients with prostate cancer. Urology. 1999;54:1058–63.

    Article  PubMed  CAS  Google Scholar 

  40. Manyak MJ, Hinkle GH, Olsen JO, et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer. 1998;83:739–47.

    Article  Google Scholar 

  41. Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol. 2008;18:87–97.

    Article  PubMed  Google Scholar 

  42. Nagda SN, Mohideen N, Lo SS, et al. Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int J Radiat Oncol Biol Phys. 2007;67:834–40.

    Article  PubMed  CAS  Google Scholar 

  43. Sodee DB, Sodee AE, Bakale G. Synergistic value of single-photon emission computed tomography/computed tomography fusion to radioimmunoscintigraphic imaging of prostate cancer. Semin Nucl Med. 2007;37:17–28.

    Article  PubMed  Google Scholar 

  44. Kahn D, Williams RD, Manyak MJ, et al. 111Indium-Capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint study group. J Urol. 1998;159:2041–6;discussion 2046–47.

    Article  PubMed  CAS  Google Scholar 

  45. Tsivian M, Wright T, Price M, Tsivian M, Wright T, Price M, et al. 111-In-capromab pendetide imaging using hybrid-gamma camera-computer tomography technology is not reliable in detecting seminal vesicle invasion in patients with prostate cancer. Urol Oncol. 2012;30:150–4.

    Article  PubMed  Google Scholar 

  46. Ellis RJ, Zhou H, Kim EY, et al. Biochemical disease-free survival rates following definitive low-dose-rate prostate brachytherapy with dose escalation to biologic target volumes identified with SPECT/CT capromab pendetide. Brachytherapy. 2007;6:16–25.

    Article  PubMed  Google Scholar 

  47. National Comprehensive Cancer Network: NCCN clinical practice guidelines in oncology. Bladder Cancer. v.2.2010. 2010.

    Google Scholar 

  48. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374:239–49.

    Article  PubMed  CAS  Google Scholar 

  49. American College of Radiology: ACR appropriateness criteria: pretreatment staging of invasive bladder cancer. Available at http://www.acr.org/SecondaryMainMenuCategories/quality_safety/app_criteria/pdf/ExpertPanelonUrologicImaging/PretreatmentStagingofInvasivebladdercancerDoc11.aspx. Accessed 17 Dec 2010.

  50. American College of Radiology. ACR appropriateness criteria: follow-up imaging of bladder carcinoma. Available at http://www.acr.org/SecondaryMainMenuCategories/quality_safety/app_criteria/pdf/ExpertPanelonUrologicImaging/FollowUpImagingofBladderCarcinomaDoc4.aspx. Accessed 17 Dec 2010.

  51. Stenzl A, Cowan NC, De Santis M, et al. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2009;55:815–25.

    Article  PubMed  Google Scholar 

  52. Apolo AB, Riches J, Schöder H, et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28:3973–8.

    Article  PubMed  Google Scholar 

  53. Kibel AS, Dehdashti F, Katz MD, et al. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27:4314–20.

    Article  PubMed  Google Scholar 

  54. Heicappell R, Müller-Mattheis V, Reinhardt M, et al. Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18)F]-2-deoxy-D-glucose. Eur Urol. 1999;36:582–7.

    Article  PubMed  CAS  Google Scholar 

  55. Koyama K, Okamura T, Kawabe J, et al. Evaluation of 18F-FDG-PET with bladder irrigation in patients with uterine and ovarian tumors. J Nucl Med. 2003;44:353–8.

    PubMed  Google Scholar 

  56. Anjos DA, Etchebehere EC, Ramos CD, et al. 18F-FDG-PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48:764–70.

    Article  PubMed  Google Scholar 

  57. Kamel EM, Jichlinski P, Prior JO, et al. Forced diuresis improves the diagnostic accuracy of 18F-FDG-PET in abdominopelvic malignancies. J Nucl Med. 2006;47:1803–7.

    PubMed  CAS  Google Scholar 

  58. Kosuda S, et al. Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med. 1997;24:615–20.

    PubMed  CAS  Google Scholar 

  59. Kosuda S, Kison PV, Greenough R, et al. Anterior layering of excreted 18F-FDG in the bladder on PET/CT: frequency and cause. Am J Roentgenol. 2007;189:W96–9.

    Article  Google Scholar 

  60. Ak I, Can C. F-18 FDG-PET in detecting renal cell carcinoma. Acta Radiol. 2005;46:895–9.

    Article  PubMed  CAS  Google Scholar 

  61. Kumar R, Chauhan A, Lakhani P, et al. 2-Deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography in characterization of solid renal masses. Mol Imaging Biol. 2005;7:431–9.

    Article  PubMed  Google Scholar 

  62. Kang DE, White Jr RL, Zuger JH, et al. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004;171:1806–9.

    Article  PubMed  Google Scholar 

  63. Jadvar H, Kherbache HM, Pinski JK, Conti PS. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol. 2003;60:395–400.

    PubMed  CAS  Google Scholar 

  64. Goldberg MA, Mayo-Smith WW, Papanicolaou N, et al. FDG-PET characterization of renal masses: preliminary experience. Clin Radiol. 1997;52:510–5.

    Article  PubMed  CAS  Google Scholar 

  65. Divgi CR, Pandit-Taskar N, Jungbluth AA, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8:304–10.

    Article  PubMed  CAS  Google Scholar 

  66. Brouwers AH, Dorr U, Lang O, et al. 131 I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun. 2002;23:229–36.

    Article  PubMed  CAS  Google Scholar 

  67. De Santis M, Bokemeyer C, Becherer A, et al. Predictive impact of 2-18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J Clin Oncol. 2001;19:3740–4.

    PubMed  Google Scholar 

  68. Kollmannsberger C, Oechsle K, Dohmen BM, et al. Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. Cancer. 2002;94:2353–62.

    Article  PubMed  Google Scholar 

  69. Cremerius U, Effert PJ, Adam G, et al. FDG-PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med. 1998;39:815–22.

    PubMed  CAS  Google Scholar 

  70. Cremerius U, Wildberger JE, Borchers H, et al. Does positron emission tomography using 18-fluoro-2-deoxyglucose improve clinical staging of testicular cancer? Results of a study in 50 patients. Urology. 1999;54:900–4.

    Article  PubMed  CAS  Google Scholar 

  71. Hain SF, O’Doherty MJ, Timothy AR, et al. Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med. 2000;27:590–4.

    Article  PubMed  CAS  Google Scholar 

  72. Nuutinen JM, Leskinen S, Elomaa I, et al. Detection of residual tumours in postchemotherapy testicular cancer by FDG-PET. Eur J Cancer. 1997;33:1234–41.

    Article  PubMed  CAS  Google Scholar 

  73. National Comprehensive Cancer Network: NCCN clinical practice guidelines in oncology. Testicular Cancer. v.2.2010. April 1, 2010.

    Google Scholar 

  74. Krege S, Beyer J, Souchon R, et al. European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European germ cell cancer consensus group (EGCCCG): part I. Eur Urol. 2008;53:478–96.

    Article  PubMed  Google Scholar 

  75. Huddart RA, O’Doherty MJ, Padhani A, et al. 18fluorodeoxyglucose Positron emission tomography in the prediction of relapse in patients with high-risk, clinical stage I nonseminomatous germ cell tumors: preliminary report of MRC trial TE22—the NCRI testis tumour clinical study group. J Clin Oncol. 2007;25:3090–5.

    Article  PubMed  Google Scholar 

  76. Lassen U, Daugaard G, Eigtved A, et al. Whole-body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med Mol Imaging. 2003;30:396–402.

    Article  PubMed  CAS  Google Scholar 

  77. de Wit M, Hartmann M, Kotzerke J, et al. [18F]-FDG-PET in clinical stage I and II non-seminomatous germ cell tumors: first results of the German multicenter trial (abstract). J Clin Oncol. 2005;23:4504.

    Google Scholar 

  78. Albers P, Bender H, Yilmaz H, et al. Positron emission tomography in the clinical staging of patients with stage I and II testicular germ cell tumors. Urology. 1999;53:808–11.

    Article  PubMed  CAS  Google Scholar 

  79. Tsatalpas P, Beuthien-Baumann B, Kropp J, et al. Diagnostic value of 18F-FDG positron emission tomography for detection and treatment control of malignant germ cell tumors. Urol Int. 2002;68:157–63.

    Article  PubMed  Google Scholar 

  80. Becherer A, De Santis M, Karanikas G, et al. FDG-PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur J Radiol. 2005;54:284–8.

    Article  PubMed  Google Scholar 

  81. Lewis DA, Tann M, Kesler K, et al. Positron emission tomography scans in postchemotherapy seminoma patients with residual masses: a retrospective review from Indiana university hospital. J Clin Oncol. 2006;24:e54–5.

    Article  PubMed  Google Scholar 

  82. Haba Y, Williams MV, Neal DE, et al. Stage migration and pilot studies of reduced chemotherapy supported by positron-emission tomography findings suggest new combined strategies for stage 2 nonseminoma germ cell tumour. BJU Int. 2008;101:570–4.

    Article  PubMed  Google Scholar 

  83. Sugawara Y, Zasadny KR, Grossman HB, et al. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG-PET and kinetic modeling. Radiology. 1999;211:249–56.

    PubMed  CAS  Google Scholar 

  84. Stephens AW, Gonin R, Hutchins GD, Einhorn LH. Positron emission tomography evaluation of residual radiographic abnormalities in postchemotherapy germ cell tumor patients. J Clin Oncol. 1996;14:1637–41.

    PubMed  CAS  Google Scholar 

  85. Stephens AW, Gonin R, Hutchins GD, Einhorn LH. Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy—initial experience 1. Radiology. 2006;238:970–7.

    Article  Google Scholar 

  86. Erasmus JJ, Patz EF, McAdams HP, et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. Am J Roentgenol. 1997;168:1357–60.

    Article  CAS  Google Scholar 

  87. Groussin L, Bonardel G, Silvéra S, et al. 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab. 2009;94:1713–22.

    Article  PubMed  CAS  Google Scholar 

  88. Metser U, Miller E, Lerman H, et al. 18F-FDG-PET/CT in the evaluation of adrenal masses. J Nucl Med. 2006;47:32–7.

    PubMed  Google Scholar 

  89. Metser U, Miller E, Lerman H, et al. Utility of PET/CT in differentiating benign from malignant adrenal nodules in patients with cancer. Am J Roentgenol. 2008;191:1545–51.

    Article  Google Scholar 

  90. Fottner C, Helisch A, Anlauf M, et al. 6-18F-Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95:2800–10.

    Article  PubMed  CAS  Google Scholar 

  91. Cohn SL, Pearson AD, London WB, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  Google Scholar 

  92. Monclair T, Brodeur GM, Ambros PF, et al. The international neuroblastoma risk group (INRG) staging system: an INRG task force report. J Clin Oncol. 2009;27:298–303.

    Article  PubMed  Google Scholar 

  93. Kushner BH, Kramer K, Modak S, Cheung NK. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol. 2009;27:1041–6.

    Article  PubMed  Google Scholar 

  94. Jacobsson H, Bremmer S, Larsson SA. Visualisation of the normal adrenals at SPET examination with 111In-pentetreotide. Eur J Nucl Med Mol Imaging. 2003;30:1169–72.

    Article  PubMed  Google Scholar 

  95. Scher B, Seitz M, Reiser M, et al. 18F-FDG-PET/CT for staging of penile cancer. J Nucl Med. 2005;46:1460–5.

    PubMed  Google Scholar 

  96. Graafland NM, Leijte JA, Valdés Olmos RA, et al. Scanning with 18F-FDG-PET/CT for detection of pelvic nodal involvement in inguinal node-positive penile carcinoma. Eur Urol. 2009;56:339–45.

    Article  PubMed  Google Scholar 

  97. Leijte JA, Graafland NM, Valdés Olmos RA, et al. Prospective evaluation of hybrid 18F-fluorodeoxyglucose positron emission tomography/computed tomography in staging clinically node-negative patients with penile carcinoma. BJU Int. 2009;104:640–4.

    Article  PubMed  Google Scholar 

  98. Schlenker B, Scher B, Tiling R, et al. Detection of inguinal lymph node involvement in penile squamous cell carcinoma by 18F-fluorodeoxyglucose PET/CT: a prospective single-center study. Urol Oncol. 2012;30:50–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Dunphy DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunphy, M. (2013). Nuclear Medicine Imaging in Genitourinary Oncology. In: Bach, A., Zhang, J. (eds) Atlas of Genitourinary Oncological Imaging. Atlas of Oncology Imaging, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4872-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4872-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4871-6

  • Online ISBN: 978-1-4614-4872-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics