Skip to main content

Ideal Metrics with Respect to Summation Scheme for i.i.d. Random Variables

  • Chapter
  • First Online:
The Methods of Distances in the Theory of Probability and Statistics

Abstract

The subject of this chapter is the application of the theory of probability metrics to limit theorems arising from summing independent and identically distributed (i.i.d.) random variables (RVs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Barlow and Proschan [1975, Chap. 4] and Kalashnikov and Rachev [1988, Chap. 4] for the necessary definitions.

  2. 2.

    See, for example, Dunford and Schwartz [1988, Theorem IV.8.3.5].

  3. 3.

    See, for example, Erdös and Spencer [1974, p. 17].

  4. 4.

    See Sect. 2.5 in Chap. 2 and Sect. 3.3 in Chap. 3.

  5. 5.

    Recent publications on applications include Hein et al. [2004] and Sençimen and Pehlivan [2009].

  6. 6.

    See Zolotarev [1986, Chap. 1].

  7. 7.

    See Lemma 3.3.1, (3.4.18), and (3.3.13) in Chap. 3.

  8. 8.

    See Billingsley [1999].

  9. 9.

    See Kalashnikov and Rachev [1988, Chap. 3], Sect. 8.3, and further Lemma 18.2.1.

  10. 10.

    See Zolotarev [1986, Chap. 3] and Kalashnikov and Rachev [1988, Theorem 10.1.1].

  11. 11.

    See Kalashnikov and Rachev [1988, Sect. 3, Theorem 10.1].

  12. 12.

    See Corollary 5.5.1 and Theorem 6.2.1.

  13. 13.

    See Theorem 6.4.1 or Theorem 8.3.1 with \(c(x,y) = \vert x - y\vert \).

  14. 14.

    See, for example, Rachev and Rüschendorf [1992] for an application of ideal metrics in the multivariate CLT, Rachev and Rüschendorf [1994] for an application of the Kantorovich metric, Maejima and Rachev [1996] for rates of convergence in operator-stable limit theorems, and Klebanov et al. [1999] for rates of convergence in prelimit theorems.

References

  1. Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models. Holt, Rinehart, and Winston, New York

    Google Scholar 

  2. Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  3. Daley DJ (1988) Tight bounds on the exponential approximation of some aging distributions. Ann Prob 16:414–423

    Article  MathSciNet  MATH  Google Scholar 

  4. Dunford N, Schwartz J (1988) Linear operators, vol 1. Wiley, New York

    Google Scholar 

  5. Erdös P, Spencer J (1974) Probabilistic methods in combinatorics. Academic, New York

    MATH  Google Scholar 

  6. Hein M, Lal TN, Bousquet O (2004) Hilbertian metrics on probability measures and their application in SVMs’. In: Proceedings of the 26th DAGM symposium, pp 270–277

    Google Scholar 

  7. Kalashnikov VV, Rachev ST (1988) Mathematical methods for construction of stochastic queueing models. Nauka, Moscow (in Russian) [English transl., (1990) Wadsworth, Brooks–Cole, Pacific Grove, CA]

    Google Scholar 

  8. Klebanov L, Rachev S, Szekely G (1999) Pre-limit theorems and their applications. Acta Appl Math 58:159–174

    Article  MathSciNet  MATH  Google Scholar 

  9. Maejima M, Rachev S (1996) Rates of convergence in the operator-stable limit theorem. J Theor Prob 9:37–85

    Article  MathSciNet  MATH  Google Scholar 

  10. Rachev S, Rüschendorf L (1992) A new ideal metric with applications to multivariate stable limit theorems. ProbTheor Relat Fields 94:163–187

    Article  MATH  Google Scholar 

  11. Rachev S, Rüschendorf L (1994) On the rate of covergence in the clt with respect to the Kantorovich metric. In: Hoffman-Jorgensen J, Kuelbs J, Markus MB (eds) Probability in Banach spaces. Birkhäuser, Boston, pp 193–207

    Google Scholar 

  12. Senatov VV (1980) Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem. Theor Prob Appl 25:745–759

    Article  MathSciNet  Google Scholar 

  13. Sençimen C, Pehlivan S (2009) Strong ideal convergence in probabilistic metric spaces. Proc Ind Acad Sci 119(3):401–410

    Article  MATH  Google Scholar 

  14. Zolotarev VM (1976a) Approximation of distributions of sums of independent random variables with values in infinite-dimensional spaces. Theor Prob Appl 21:721–737

    Article  MATH  Google Scholar 

  15. Zolotarev VM (1976b) Metric distances in spaces of random variables and their distributions. Math USSR sb 30:373–401

    Article  Google Scholar 

  16. Zolotarev VM (1986) Contemporary theory of summation of independent random variables. Nauka, Moscow (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J. (2013). Ideal Metrics with Respect to Summation Scheme for i.i.d. Random Variables. In: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4869-3_15

Download citation

Publish with us

Policies and ethics