Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Errata for Introduction of Linear Elasticity 3rd Ed.

 

Original

Errata

1

Page 12, Exercise 1.8

“Write the divergence theorem defined in (1.18a) and (1.18b) in indicial notations”

“Write the divergence theorem defined in (1.14) in indicial notation”

2

Page 12, Ex. 1.9

\( \varepsilon_{ijk} A_{ij} {\mathbf{e}}_{k}\)

\(\varepsilon_{ijk} A_{j,i} {\mathbf{e}}_{k} \)

3

Page 43, Ex. 2.1(a), second row

\(\sigma_{21} = \sigma,\sigma_{22} = 0, \sigma_{33} = 0\)

\(\sigma_{22} = \sigma,\sigma_{23} = 0, \sigma_{33} = \sigma \)

4

Page 45, Ex. 2.11

\(\sigma_{ns} = [\sigma_{ik}\sigma_{jm}n_{k}n_{m}(\delta_{km} - n_{k}n_{m})]^{1/2} \)

\(\sigma_{ns} = [\sigma_{ik}\sigma_{jm}n_{k}n_{m}(\delta_{ij} - n_{i}n_{j})]^{1/2} \)

5

Page 67, Ex. 3.1

\(uy \)

\(u_{y} \)

6

Page 69, Ex. 3.6 (b)

\(u_{2} = y_{3} =0 \)

\(u_{2} = u_{3} =0 \)

7

Page 69, Ex. 3.8(a)

\( R_{1} = \cdots = 0 \)

\( R_{2} = \cdots = 0 \)

\( R_{3} = \cdots = 0 \)

\( R_{3} = \cdots = 0 \)

\( R_{1} = \cdots = 0 \)

\( R_{2} = \cdots = 0 \)

8

Page 144

Eq. (7.23a,b,c)

\( \sigma_{rr} = \alpha_{ri}\alpha_{rj}\sigma_{ij} \)

\( \sigma_{\theta\theta} = \alpha_{\theta i}\alpha_{\theta j}\sigma_{ij}\)

\( \sigma_{r \theta} = \alpha_{ri}\alpha_{\theta j}\sigma_{ij} \)

9

Page 145

Eq. (7.24), table head “x, y, x”

Table head should be “x, y, z”

10

Page 179

Ex. (7.2c)

Add condition “assume v = 0.3, E = 30 × 103

11

Page 184, Ex. 7.20

“plane strain case”

“plane stress case”

12

Page 185, Ex. 7.21

\( \frac{1}{r}(r\phi,r),r + E\alpha\Delta T = 0\)

\( \nabla^{2}\left[\textstyle\frac{1}{r}(r\phi,r),r\right] + E\alpha\Delta T = 0\)

Hint: Generalize (7.8) based on (4.42).

13

Page 259, Ex. 9.7(a)

\( \phi\) satisfies (9.107) and (9.108)

\( \phi \) satisfies (9.114) and (9.115)

14

Page 329, Ex. 12.4

The shaft is subjected to axial load and P

The shaft is subjected to axial load P

15

Page 281, Ex. (10.4) \( {\varepsilon} (t)=C\sigma_0\)

\( C=C_g+\frac{C_v}{s+1/\tau}\)

\({\varepsilon} (s)=C\sigma (s) \)

\(C=\frac{{C_v}{C_g}}{C_g+\frac{C_vs}{s+1/\tau}} \)